
AFRL-VA-WP-TR-2005-3034 
 
CONSISTENT STRUCTURAL 
INTEGRITY AND EFFICIENT 
CERTIFICATION WITH ANALYSIS 
Volume 2: Detailed Report on Innovative 
Research Developed, Applied, and 
Commercially Available 
 
Craig Collier  
Collier Research Corporation  
2 Eaton Street, Suite 504  
Hampton, VA 23669 
 
 
 
MAY 2005 
 
 
Final Report for 27 June 2002 – 27 June 2004 
 
 
THIS IS A SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE II REPORT. 
 
 

 
Approved for public release; distribution is unlimited.  

 
STINFO FINAL REPORT 

 
 
 
AIR VEHICLES DIRECTORATE 
AIR FORCE RESEARCH LABORATORY 
AIR FORCE MATERIEL COMMAND 
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542 



NOTICE 
 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government. 
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation; or convey any rights or 
permission to manufacture, use, or sell any patented invention that may relate to them.  
 
 
This report was cleared for public release by the Air Force Research Laboratory Wright Site 
(AFRL/WS)  Public Affairs Office (PAO) and is releasable to the National Technical 
Information Service (NTIS). It will be available to the general public, including foreign 
nationals.  
 
PAO Case Number: AFRL-WS 05-2760, 12 Dec 2005 
 
 
THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION. 
 
 
 
//S//                                                                           //S//     
______________________________________         __________________________________ 
DUANE E. VELEY                                MICHAEL L. ZEIGLER 
Aerospace Engineer            Branch Chief 
Structural Design & Development Branch             Structural Design & Development Branch 
 
 
 
 //S//
 
______________________________________ 
MICHAEL D. PILKENTON, Lt Col, USAF 
Deputy Chief 
Structures Division 
 
 
 
 
This report is published in the interest of scientific and technical information exchange and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings.  

 
 
 



i 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis 
Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 

May 2005 Final 06/27/2002 – 06/27/2004 
5a.  CONTRACT NUMBER 

F33615-02-C-3216 
5b.  GRANT NUMBER  

4.  TITLE AND SUBTITLE 

CONSISTENT STRUCTURAL INTEGRITY AND EFFICIENT 
CERTIFICATION WITH ANALYSIS 
Volume 2: Detailed Report on Innovative Research Developed, Applied, and 
Commercially Available 

5c.  PROGRAM ELEMENT NUMBER 
0605502 

5d.  PROJECT NUMBER 

A01V 
5e.  TASK NUMBER 

 

6.  AUTHOR(S) 

Craig Collier 

5f.  WORK UNIT NUMBER 

  0A 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Collier Research Corporation 

8.  PERFORMING ORGANIZATION 
  REPORT NUMBER 

2 Eaton Street, Suite 504  
Hampton, VA 23669  

9.   SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.  SPONSORING/MONITORING AGENCY 
       ACRONYM(S) 

AFRL/VASD Air Vehicles Directorate 
Air Force Research Laboratory  
Air Force Materiel Command 
Wright-Patterson AFB, OH 45433-7542 

11.  SPONSORING/MONITORING AGENCY 
       REPORT NUMBER(S) 
       AFRL-VA-WP-TR-2005-3034 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

13.  SUPPLEMENTARY NOTES 
This is a Small Business Innovation Research (SBIR) Phase II report.  Report contains color. 
This is Volume 2 of a three-volume work. See also Volume 1 (AFRL-VA-WP-TR-2005-3033) and Volume 3 (AFRL-VA-
WP-TR-2005-3035). 

14.  ABSTRACT 

Report developed under SBIR contract for topic AF01-239. 
This SBIR report maintains that reliable pretest predictions and efficient certification are suffering from inconsistent 
structural integrity that is prevalent throughout a project’s design maturity. Eight primary inconsistencies practiced in 
aerospace structural analysis are identified. This SBIR proposes solutions for these inconsistencies and documents 
software implementation and real world examples. Volume 2 looks at four example failure analysis correlations to test and 
describes new analysis methods developed for composite bonded joint stress analysis and failure and composite material 
stress analysis and failure. 

15.  SUBJECT TERMS 
SBIR Report, HyperSizer, certification, analysis, structures, aerospace, bonded joints, composite materials 

16.  SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

17. LIMITATION  
OF ABSTRACT: 

SAR 

18.  NUMBER 
OF PAGES

    256 
         Duane E. Veley 
19b.  TELEPHONE NUMBER (Include Area Code) 

(937) 255-8286 
 
 

Standard Form 298 (Rev. 8-98)   
Prescribed by ANSI Std. Z39-18 

 



iii 

 
Table of Contents 

Section                Page 
 
PART A:  PHASE II PROPOSAL SOW 

LIST OF FIGURES.....................................................................................................................................................7 
LIST OF TABLES.....................................................................................................................................................11 
ACKNOWLEDGMENTS.........................................................................................................................................12 
1 PHASE II SOW..................................................................................................................................................1 

1.1 TASK 1.  DEMONSTRATE THE CERTIFICATION PROCESS USING HYPERSIZER FOR AIR FORCE PROJECTS.....1 
1.2 TASK 2.  CALIBRATE STATE-OF-THE-ART ANALYSES TO EXPERIMENTAL TESTS ......................................1 
1.3 TASK 3.  INCORPORATE PROBABILISTIC METHODS IN HYPERSIZER...........................................................2 
1.4 TASK 4.  DEVELOP ANALYTICAL METHODS FOR AIRFRAME STRUCTURAL ANALYSES..............................2 
1.5 TASK 5.  DOCUMENT METHODS AND EQUATIONS AND PROVIDE IN ELECTRONIC FORMAT .......................3 

2 CORRELATION TO TEST: HONEYCOMB SANDWICH FACESHEET WRINKLING.......................6 
2.1 THEORY.......................................................................................................................................................6 
2.2 TEST DATA DESCRIPTION............................................................................................................................7 

2.2.1 Sample Theoretical Calculation ............................................................................................................8 
2.3 TEST DATA CORRELATION FOR HONEYCOMB SETS A AND B......................................................................9 
2.4 HYPERSIZER SETUP...................................................................................................................................12 
2.5 THE μ3 CORRELATION FACTOR .................................................................................................................13 
2.6 SIMPLE VERIFICATION OF HYPERSIZER STATISTICS..................................................................................14 

2.6.1 Honeycomb Wrinkling Correlation with μ1 = 0.59; μ3 = 1,000,000 ...................................................14 
2.6.2 Foam Sandwich Wrinkling Correlation with μ1 = 0.88; μ3 = 1,000,000 ............................................15 

2.7 REFERENCES .............................................................................................................................................16 
3 CORRELATION TO TEST: BONDED JOINT FAILURE; DELAMINATION, FIBER FRACTURE.17 

3.1 THEORY.....................................................................................................................................................17 
3.2 TEST DATA DESCRIPTION..........................................................................................................................18 

3.2.1 NASA Stepped Bonded Doubler Tests..................................................................................................18 
3.2.2 Cheuk and Tong Bonded Doubler Joint Tests .....................................................................................19 
3.2.3 Cheuk and Tong Bonded Single Lap Joint Tests..................................................................................19 
3.2.4 Sample Theoretical Calculation ..........................................................................................................20 

3.3 TEST DATA CORRELATION ........................................................................................................................22 
3.3.1 Correlation Category: Joint, Bonded, Adherend Delamination (Linear)............................................22 
3.3.2 Correlation Category: Joint, Bonded, Adherend Fracture (Linear)....................................................24 

3.4 REFERENCES .............................................................................................................................................26 
4 CORRELATION TO TEST: COMPOSITE LAMINATE STRENGTH ...................................................27 

4.1 VALIDATION TEST DATA...........................................................................................................................27 
4.1.1 Source of Test Data..............................................................................................................................27 
4.1.2 Failure Envelopes ................................................................................................................................28 

4.2 THE HYPERSIZER CORRELATION FACTOR (CF) APPROACH ......................................................................29 
4.2.1 Choice of correlation: Individual ply properties vs. Failure criteria/material system........................29 

4.3 A SIMPLE INTRODUCTORY EXAMPLE: WWFE CASE 1 WITH 19 TEST DATA ...............................................31 
4.3.1 Test data entered, and histograms and PDFs generated.....................................................................32 
4.3.2 Failure theories compared for case 1 ..................................................................................................32 
4.3.3 Two step process for defining correlations factors..............................................................................32 

4.4 TSAI-HAHN AND LARC03 BEST OVERALL FAILURE CRITERIA FOR THE 130 TESTS ....................................36 
4.4.1 Theoretical background Larc03 ..........................................................................................................36 
4.4.2 Theoretical background Tsai-Hahn.....................................................................................................36 
4.4.3 Tsai-Hahn correlation to the 130 tests ................................................................................................37 
4.4.4 LarC03 correlation to the 130 tests .....................................................................................................39 



 

iv 

4.5 SUMMARY OF EACH FAILURE THEORY’S CFS ............................................................................................40 
4.6 IN-SITU EFFECTS OF A ± θ LAYUP OF A SPECIFIC MATERIAL SYSTEM..........................................................41 
4.7 HOW THE EFFECT OF M&P CAN BE CAPTURED WITH CFS..........................................................................42 

4.7.1 AS4/3502 Properties ............................................................................................................................43 
4.7.2 IM7/8552 Properties............................................................................................................................46 

4.8 REFERENCES .............................................................................................................................................47 
5 CORRELATION TO TEST: CYLINDRICAL PANEL BUCKLING........................................................48 

5.1 THEORY.....................................................................................................................................................48 
5.2 TEST SETUP, DIMENSIONS AND MATERIAL PROPERTIES ...........................................................................48 
5.3 SUMMARY OF PHASE I RESULTS................................................................................................................49 

5.3.1 Phase I Test Data Comparison ............................................................................................................49 
5.3.2 Correlation Factors based on Two Parameters ..................................................................................51 

5.4 PHASE II UPDATED CORRELATION FACTORS.............................................................................................55 
5.5 INDEPENDENT VERIFICATION OF NASA SP-8007 RELIABILITY ................................................................57 
5.6 HYPERSIZER CFS AND GENERATED HISTOGRAM......................................................................................58 
5.7 EXAMPLE: APPLICATION OF γμ AND η TO BUCKLING OF [02/±45]S CURVED LAMINATES ...........................59 

5.7.1 Cylindrical Buckling of Beer Cans ......................................................................................................62 
5.7.1.1 Theoretical Failure Loads .......................................................................................................................... 62 
5.7.1.2 Computed Buckling Knockdown Factors and Allowable Loads................................................................ 63 
5.7.1.3 Prediction Summary................................................................................................................................... 65 
5.7.1.4 Test Data Failure Loads ............................................................................................................................. 66 
5.7.1.5 Correlation Summary................................................................................................................................. 67 
5.7.1.6 Final comments.......................................................................................................................................... 68 

5.8 REFERENCES .............................................................................................................................................69 
6 COMPOSITE BONDED JOINT STRESS ANALYSIS AND FAILURE...................................................70 

6.1 RAPID, ACCURATE AND RELIABLE FAILURE PREDICTION .........................................................................71 
6.1.1 References............................................................................................................................................72 

6.2 ACCURATE INTERLAMINAR STRESS PREDICTIONS.....................................................................................73 
6.2.1 In-Service Structural Panels vs. Standalone Test Articles...................................................................74 
6.2.2 In-Service Panel Deformations............................................................................................................76 
6.2.3 In-Plane and Through Thickness Stress Distributions.........................................................................77 
6.2.4 Non-linear Adhesives...........................................................................................................................80 

6.2.4.1 Bonded Joint Example with Non-Linear Adhesive.................................................................................... 81 
6.2.5 Scarfed and Stepped Joints ..................................................................................................................83 

6.2.5.1 Bonded Joint Example with Stepped Adherend......................................................................................... 85 
6.2.6 Spew Fillets..........................................................................................................................................87 

6.3 WHY A NEW CAPABILITY WAS DEVELOPED..............................................................................................88 
6.3.1 Contrasting HyperSizer with Hart-Smith (A4EI).................................................................................88 
6.3.2 Contrasting HyperSizer with FEA .......................................................................................................92 

6.3.2.1 When is 2D FEA Inadequate and 3D Solid Model FEA required.............................................................. 95 
6.3.2.2 Observations from HyperSizer – FEA comparisons .................................................................................. 96 

6.3.3 References............................................................................................................................................97 
6.4 THEORETICAL DEVELOPMENT OF BONDED JOINT STRESS ANALYSIS........................................................98 

6.4.1 Summary ..............................................................................................................................................98 
6.4.2 Symbols................................................................................................................................................98 
6.4.3 Bonded Joint Concepts Analyzed By BondJo ....................................................................................100 
6.4.4 Basic assumptions for the structural modeling of bonded joints .......................................................102 
6.4.5 Adherends as Plates in Generalized Cylindrical Bending .................................................................102 
6.4.6 Constitutive Relations for the Adhesive Layer ...................................................................................104 

6.4.6.1 Linear spring adhesive model .................................................................................................................. 104 
6.4.6.2 Non-linear adhesive model ...................................................................................................................... 104 
6.4.6.3 Equilibrium equations.............................................................................................................................. 104 
6.4.6.4 The complete set of system equations...................................................................................................... 107 
6.4.6.5 The boundary conditions.......................................................................................................................... 108 
6.4.6.6 Multi-segment method of integration....................................................................................................... 108 

6.4.7 In-plane Stresses in the Adherends ....................................................................................................108 
6.4.8 Out-of-plane (Interlaminar) Stresses in the Adherends .....................................................................110 
6.4.9 Nonlinear Analysis of Adhesive .........................................................................................................113 



 

v 

6.4.9.1 Non-linear Material Model of the Adhesive ............................................................................................ 113 
6.4.9.1.1 Elastic-plastic model........................................................................................................................... 113 
6.4.9.1.2 Bi-linear model ................................................................................................................................... 113 
6.4.9.1.3 Power law material model .................................................................................................................. 114 
6.4.9.1.4 Ramberg-Osgood model ..................................................................................................................... 114 
6.4.9.1.5 Multilinear (Polynomial) model ......................................................................................................... 114 

6.4.9.2 Yielding of the Adhesive ......................................................................................................................... 115 
6.4.9.3 Stresses of Elastic Adhesive Layer .......................................................................................................... 115 
6.4.9.4 Non-linear Solution Procedure................................................................................................................. 116 
6.4.9.5 Conclusions.............................................................................................................................................. 119 

6.4.10 References .....................................................................................................................................119 
6.5 STRENGTH FAILURE THEORIES................................................................................................................120 

6.5.1 Summary of Failure Modes and Equations........................................................................................120 
6.5.2 Adherend Failure...............................................................................................................................120 

6.5.2.1 Interlaminar delamination ........................................................................................................................ 120 
6.5.2.2 Matrix cracking........................................................................................................................................ 122 

6.5.3 Adhesive Failure (cohesive and adhesive/adherend interface failure) ..............................................123 
6.5.4 Fracture Mechanics Based Failure Criteria .....................................................................................124 
6.5.5 References..........................................................................................................................................125 

6.6 ISSUES WITH PREDICTING PEAK BONDED JOINT INTERLAMINAR STRESSES ............................................127 
6.6.1 Disparity in Stress Results from Different Analysis Methods ............................................................127 
6.6.2 Uncertainty in Predicting Failure at the Reentrant Corner ..............................................................129 

6.7 HYPERSIZER EXAMPLE: COMPOSITE BONDED JOINT ..............................................................................131 
6.7.1 Software Operation............................................................................................................................131 
6.7.2 Analysis Result Screenshots...............................................................................................................134 
6.7.3 Limitations of Capability ...................................................................................................................142 

6.8 FUTURE DEVELOPMENT ..........................................................................................................................143 
6.8.1 Inclusion of deformable shear theory in the adherend ......................................................................143 
6.8.2 Inclusion of geometric non-linearity in joint analysis. ......................................................................145 
6.8.3 Replace Spring Model with Higher Order Theory Continuum Model...............................................148 
6.8.4 Micromechanics Analysis of Bonded Joints.......................................................................................149 
6.8.5 References..........................................................................................................................................150 

6.9 VERIFICATION EXAMPLES .......................................................................................................................151 
6.9.1 Bonded Doubler Verification – Delale and Erdogan, monolithic......................................................151 
6.9.2 Bonded Doubler Verification – StressCheck FEA, [0/±45/90] Laminate..........................................155 
6.9.3 Bonded Doubler Verification – Mortensen [0/30/60] Laminate........................................................158 
6.9.4 Single Lap Verification – Mortenson, [0/30/60] Laminate................................................................161 
6.9.5 References..........................................................................................................................................164 

6.10 VALIDATION EXAMPLES ..........................................................................................................................165 
6.10.1 Approach Summary.......................................................................................................................165 
6.10.2 Bonded Doubler Validation – Tong Example ...............................................................................166 
6.10.3 Bonded Doubler Validation – NASA Example ..............................................................................168 
6.10.4 Single Lap Validation – Tong Example.........................................................................................173 
6.10.5 References .....................................................................................................................................175 

6.11 SIGN CONVENTIONS AND REFERENCE PLANES........................................................................................176 
6.11.1 Sign Convention ............................................................................................................................176 
6.11.2 Reference Planes...........................................................................................................................178 

6.11.2.1 Reference Planes for Reporting of Results............................................................................................... 178 
6.11.2.2 Reference Planes for Introduction of Loads............................................................................................. 179 

7 COMPOSITE MATERIAL STRESS ANALYSIS AND FAILURE .........................................................181 
7.1 BACKGROUND .........................................................................................................................................182 

7.1.1 The Physics of Composite Failure .....................................................................................................182 
7.1.2 V&V of Failure Criteria ....................................................................................................................183 
7.1.3 Uncertainty at the Ply Level ..............................................................................................................184 

7.2 DESIGN CRITERIA....................................................................................................................................185 
7.2.1 Typical material properties vs. Design-to allowables .......................................................................185 
7.2.2 Design-to allowables .........................................................................................................................185 
7.2.3 Ply vs. laminate allowables ...............................................................................................................186 
7.2.4 1st ply damage initiation vs. progressive failure ................................................................................186 



 

vi 

7.2.4.1 Macro ply level progressive failure.......................................................................................................... 187 
7.2.4.2 Micro fiber/matrix level progressive failure ............................................................................................ 187 

7.3 CHARACTERISTIC DIMENSION .................................................................................................................188 
7.4 FAILURE ANALYSES FOR PRELIMINARY AND FINAL DESIGN .....................................................................189 
7.5 REVIEW OF BEST FAILURE THEORIES TO DATE ......................................................................................190 

7.5.1 Max Strain, Max Stress, Tsai-Hill, Tsai-Wu, and Tsai-Hahn failure theories...................................190 
7.5.1.1 Maximum Stress Criterion ....................................................................................................................... 190 
7.5.1.2 Maximum Strain Criterion ....................................................................................................................... 191 
7.5.1.3 Tsai-Hill Criterion.................................................................................................................................... 192 
7.5.1.4 Tsai-Wu Criterion .................................................................................................................................... 194 
7.5.1.5 Tsai-Hahn Criterion ................................................................................................................................. 195 
7.5.1.6 Summary of Tsai Theories....................................................................................................................... 196 

7.5.2 Zinoviev failure theory.......................................................................................................................196 
7.5.3 Hashin failure theory (2D and 3D)....................................................................................................196 
7.5.4 Sun failure theory ..............................................................................................................................199 
7.5.5 Puck failure theory.............................................................................................................................200 

7.5.5.1 Fiber failure (FF) ..................................................................................................................................... 200 
7.5.5.2 Inter-Fiber Failure (matrix cracking) ....................................................................................................... 202 
7.5.5.3 Parameters in Puck’s failure criteria ........................................................................................................ 205 
7.5.5.4 Overall performance of Puck failure criteria and its adaptability to industry........................................... 206 

7.5.6 LaRC03 failure theory .......................................................................................................................206 
7.5.6.1 Matrix failure ........................................................................................................................................... 207 

7.5.6.1.1 Criterion for matrix failure under transverse compression (σ22 < 0)................................................... 207 
7.5.6.1.2 Criterion for matrix failure under transverse tension (σ22 > 0) ........................................................... 209 

7.5.6.2 Fiber failure ............................................................................................................................................. 212 
7.5.6.2.1 Criterion for fiber tension failure........................................................................................................ 212 
7.5.6.2.2 Criterion for fiber compression failure ............................................................................................... 212 

7.5.6.3 Matrix Damage in Biaxial compression................................................................................................... 214 
7.5.7 Strain Invariant Failure Theory (SIFT) .............................................................................................214 
7.5.8 Summary Conclusions........................................................................................................................216 

7.6 BLANK SECTION......................................................................................................................................216 
7.7 IMPLEMENTATION OF LARC03 FAILURE THEORY...................................................................................217 

7.7.1 Input parameters for LaRC03 failure criterion .................................................................................217 
7.7.2 Methods of generation of LaRC03 failure envelops ..........................................................................219 

7.7.2.1 Newton-Raphson method......................................................................................................................... 219 
7.7.2.2 Equations for generation of failure envelopes.......................................................................................... 220 

7.8 IMPLEMENTATION OF HASHIN FAILURE THEORY ....................................................................................222 
7.8.1 Input parameters for Hashin failure criterion ...................................................................................222 
7.8.2 Generation of failure envelopes and calculation of margin of safety ................................................222 

7.9 IMPLEMENTATION OF STRAIN INVARIANT FAILURE THEORY (SIFT).......................................................224 
7.9.1 Conditions of using SIFT for matrix failure.......................................................................................224 
7.9.2 Critical values of the strain invariants ..............................................................................................225 
7.9.3 Margin of Safety ................................................................................................................................225 
7.9.4 Multi-scale analysis exploring the fields in fiber and matrix phases.................................................225 
7.9.5 Verification ........................................................................................................................................226 
7.9.6 Discussion..........................................................................................................................................233 

7.10 REFERENCES ...........................................................................................................................................235 
 
 
 
 
 
 



 

vii 

List of Figures 
FIGURE  PAGE
1.0 HyperSizer Plug-Ins         3 
2.2a Wrinkling failure test article        7 
2.2b Test results for a) Set A “0°  core”, and b) Set B “90° core”     7 
2.2c Test results for c) Set E “Isotropic (Foam) Core”     8 
2.3 P = T because test data not yet reanalyzed with established CFs   9 
2.4 P and T are now different values because test data has been reanalyzed  10 
2.5 Test results for a ) Set A “0° core”, and b) Set B “90° core”    11 
2.6 Histogram showing eight honeycomb sandwich data points    14 
2.7 Histogram from HyperSizer showing seven foam sandwich data points  15 
3.1 Delamination failure in the NASA stepped bonded doubler example 18 
3.2 Schematics of a skin/flange specimen (bonded doubler)   18 
3.3 Schematic of bonded doubler test specimens     19 
3.4 Schematic of bonded single lap joint test specimens     19 
3.5 Stress in the facesheet outer ply (adjacent to the adhesive)    21 
3.6 P = T because test data not yet reanalyzed with established CFs   22 
3.7 P and T now different values because test data has been reanalyzed   23 
3.8 P = T because test data not yet reanalyzed with established CFs  24 
3.9 P and T now different values because test data has been reanalyzed  25 
4.1 Failure envelopes plotted with superimposed WWFE test data   28 
4.2 Data sheet from Mil-Hdbk-17 29 
4.3 HyperSizer generated failure envelopes for WWFE Case 1    31 
4.4 For WWFE Case 1, biaxial σy-σxy failure envelopes  0o E-glass 34 
4.5 For WWFE Case 1, biaxial σy-σxy failure envelopes. Max Strain  34 
4.6 After applying correlation factors for WWFE Case 1 of 0o E-glass   35 
4.7 After applying correlation factors for WWFE Case 1, Max Strain  35 
4.8 LaRC03 failure criteria distinguishes between 6 possible failures  36 
4.9 A HyperSizer Composite Strength, Tsai-Hahn histogram,130 test data pts  38 
4.10 Composite Strength, LaRC03 Fiber Failure after correlation.  39 
4.11 Composite Strength, LaRC03 Matrix Cracking after correlation. 39 
4.12 Compressive strength of [+/-θ]s AS4/3502 predicted by failure theories  41 
4.13 Compressive strength of [+/-θ]s AS4/3502 predicted by LaRC03  42 
4.14 AS4/3502 using a-prior Mil-Hdbk-17-2E material properties   44 
4.15 AS4/3502 using  in-situ test data material properties     45 
5.1 The ratio of experimental buckling load divided by theoretical   51 
5.2 Linear regression of the analysis correlation factor, γμ ,  for two parameters  52 
5.3 Bar chart comparing γμ values from Table 14     53 
5.4 NASA SP8007 knockdown &(D13+D23)/(D11+D22) bending stiffness 54 
5.5 Overall knockdown factor is now less reliant on the off-diagonal D ratio  55 
5.6 Bar chart itemized by test specimen groups comparing γμ from Table 17  56 
5.7 Panel Buckling, Curved, Simple, Fixed, or Free BC, Biaxial stiffness  58 
5.8 HyperSizer Raleigh Ritz buckling solutions for the beer can, compression 62 
5.9 PDF for 32 beer can buckling test articles    65 
5.10 Histogram of the 32 beer can buckling failure loads  66 
5.11 Traditional one knockdown approach to cylindrical panel buckling 68 
6.1 HyperSizer predicts bonded joint failure to avoid failure such as this 70 
6.1.1 Composite failure mode at the reentrant corner of a bonded flange  71 



 

viii 

FIGURE  PAGE
6.1.2 Failure modes in adhesively bonded joints    72 
6.1.3 Failure prediction require accurate out-of-plane interlaminar shear peel 72 
6.2.1 Panel loads into interlaminar stresses of adhesive and laminate adherends 73 
6.2.2 BCs on an “in-service panel” enforced uniform edge deformation  74 
6.2.3 Free BCs on standalone test article permit non-uniform edge deformation  75 
6.2.4 The five deformations of in-service panels are handled by BondJo  76 
6.2.5 Interlaminar stress calculations throughout depth of bonded joint  77 
6.2.6 Stress calculations performed by HyperSizer through the depth of the joint 78 
6.2.7 In-plane stresses through the laminate and adhesive depth   79 
6.2.8 Non-linear adhesive effects can reduce peak interlaminar shear ,peel stress 80 
6.2.9 Composite bonded doubler joint example configuration    81 
6.2.10 Stress-strain curves of epoxy AY103 adhesive    81 
6.2.11 Linear versus non-linear results for a bonded doubler 82 
6.2.12 Scarfed or stepped effects can reduce peak interlaminar shear, peel stress 83 
6.2.13 HyperSizer BondJo computes stresses through the thickness of each ply  84 
6.2.14 Composite stepped bonded doubler joint example configuration  85 
6.2.15 Linear versus non-linear results for a stepped bonded doubler 86 
6.2.16 Spew fillets can reduce peak interlaminar shear and peel stress  87 
6.3.1 Hart-Smith (A4EI) permitted loads in contrast to HyperSizer-BondJo  88 
6.3.4 Meshes of 3D finite element model for the bonded doubler    95 
6.4.1a Single-lap joint with straight adherend 100 
6.4.1b Single-lap joint with scarfed adherend   100 
6.4.1c Double-lap joint with straight adherend   100 
6.4.1d Bonded doubler joint with straight, scarfed, or stepped adherend 100 
6.4.1e Single sided stepped joint     101 
6.4.1f Single sided scarfed joint  101 
6.4.1g Double sided stepped joint  101 
6.4.1h Double sided scarfed joint  101 
6.4.2 Schematic illustration of adhesive single lap joint with straight adherends  105 
6.4.3 Equilibrium elements of adherend outside the overlap zone  106 
6.4.4 Equilibrium element of adherends inside the overlap zone for joints 106 
6.4.5 Lay-up of a laminate and the coordinate system   109 
6.4.6 Models for nonlinear adhesive stress-strain curves  114 
6.4.7 Illustration of the nonlinear solution procedure for adhesive joints 117 
6.4.8 Points on the adhesive layer in nonlinear analysis 117 
6.4.9 Flow chart for the nonlinear analysis for the adhesively bonded joints 118 
6.5.1 Failure modes in adhesively bonded joints by Heslehurst and Hart-Smith 120 
6.6.1 Differences in peak interlaminar stress predictions at the reentrant corner 127 
6.6.2 Stresscheck verification example, small area around the reentrant corner  127 
6.6.3 With more points, shape of curve same, peak stress increases  128 
6.6.4 Four methods for predicting failure in bonded joints,  reentrant corner 129 
6.7.1 Configuration for bonded joint example    131 
6.7.2 Adherend 1 (top facesheet) laminate specification     131 
6.7.3 Flange laminate (Adherend 2) and adhesive specification  132 
6.7.4 Bonded joint geometry shown in HyperSizer graphics   132 
6.7.5 Joint loads entered on HyperSizer’s FBD tab   133 
6.7.6 Joint parameters entered as “backdoor data”    133 
6.7.7 Composite Joint Margins of safety reported on the failure tab 142 



 

ix 

FIGURE  PAGE
6.8.1 Introducing first-order shear deformable theory into bonded joint analysis 144 
6.8.2 Typical linear deformation of a bonded doubler joint   145 
6.8.3 Schematic of bonded doubler test specimens examined by Cheuk and Tong 145 
6.8.4 Vertical deflection, w, of the Cheuk and Tong validation problem   146 
6.8.5 Comparison of FEA results to the experimental of axial strain vs. load  146 
6.8.6 Modeling geometric nonlinearity in a single lap joint    147 
6.8.7 Normalized adhesive layer peel & interlaminar shear stress, using SMA  148 
6.8.8 Forces on the stiffened panel       149 
6.9.1 Configuration of bonded doubler joint example     151 
6.9.2 Comparisons for the applied tensile load case     152 
6.9.3 Comparisons for the applied moment case      153 
6.9.4 Through-the-thickness distribution of out-of-plane stresses (Nxx)   154 
6.9.5 Through-the-thickness distribution of out-of-plane stresses (Mxx)  154 
6.9.6 HyperSizer-BondJo to Stresscheck verification problem    155 
6.9.7 Adhesive stress validation for panel applied axial force    156 
6.9.8 Adhesive stress validation for panel applied axial moment    156 
6.9.9 Through-thickness stress result comparison between HyperSizer-BondJo 

and Stresscheck for panel applied axial force      
157 

6.9.10 Through-thickness stress result comparison between HyperSizer-BondJo 
and Stresscheck for panel applied moment      

157 

6.9.11 Configuration of Mortenson’s composite bonded doubler joint example   158 
6.9.12 Adherend transverse displacement HyperSizer-BondJo and Mortensen  159 
6.9.13 Adherend bending moment between HyperSizer-BondJo and Mortensen  159 
6.9.14 Out-of-plane adhesive stress between HyperSizer-BondJo and Mortensen 159 
6.9.15 Mortensen’s example for single lap joints.       160 
6.9.16 Single-lap joint comparison between HyperSizer-BondJo and Mortensen  162 
6.9.16 Single-lap joint comparison between HyperSizer-BondJo and Mortensen  163 
6.10.1 Schematic of bonded doubler test specimens by Cheuk and Tong.   166 
6.10.2 Through-the-thickness distribution of margin of safety of adherend 1 at 

point a with linear adhesive under P =13 kN.     
167 

6.10.3 Through-the-thickness distribution of margin of safety of adherend 1 at 
point a with nonlinear adhesive under P =14 kN.     

167 

6.10.4 Schematics of a skin/flange specimen      168 
6.10.5 Modeling of the flange scarf      169 
6.10.6 Quasi-static and fatigue failure loads for the NASA tested skin/flange 

specimens.  HyperSizer-BondJo results compared only to quasi-static data  
170 

6.10.7 Adhesive peel and interlaminar shear stresses along the bond line of the 
NASA skin/flange specimens.       

171 

6.10.8 Through-the-thickness distribution of interlaminar stresses at 1 and 2  171 
6.10.9 Through-the-thickness distribution of interlaminar stresses at 3 and 4  172 
6.10.11 Through-the-thickness distribution of interlaminar stresses at 5   172 
6.10.12 Through-the-thickness distribution of the margin of safety of skin at the 

bond line corner (position 1), under longitudinal tension of 24.4 kN.    
172 

6.10.13 Single lap joint configuration in Tong’s problem.     173 
6.10.14 All of the load-displacement curves from experimental results deviate  174 
6.10.15 Through-the-thickness margin of safety of adherend 1 with linear   174 
6.10.16 Through-the-thickness margin of safety of adherend 1 with nonlinear  174 
6.11.1 The “HyperSizer panel” sign convention      176 



 

x 

FIGURE  PAGE
6.11.2 The “typical academic” sign convention follows standalone test article.    177 
6.11.3 Reference plane HyperSizer panel coordinate system.      178 
6.11.4 Reference plane in the typical academic sign convention.     178 
6.11.4 Reference plane in the typical academic sign convention single lap joints 179 
6.11.4 Loads are always introduced at the same reference     179 
6.11.5 In the BondJo, each adherend of the joint is treated as a separate piece  180 
7.1.1 LaRC03 distinguishes between six different possible physical failures  183 
7.1.2 Compressive strength of [+/-θ]s AS4/3502 predicted    183 
7.2.1 An example table from Mil Hnbk 17 showing typical (mean)   185 
7.2.2 An example “carpet pot” laminate based strain allowable     186 
7.2.3 Failure envelope of progressive failure       187 
7.3.1 Illustration of different radial distances used     188 
7.5.1 Maximum Stress Failure Envelope       190 
7.5.2 Comparison, max stress to max strain 192 
7.5.3 Tsai Hill         194 
7.5.4 Tsai-Hill with different compression/tension allowables    194 
7.5.5 Tsai Wu Failure Envelope 195 
7.5.6 Lamina subjected to longitudinal stress      201 
7.5.7 The concept of fracture plane in UD lamina 202 
7.5.8 Matrix failure envelopes for a typical unidirectional E-glass/epoxy  209 
7.5.9 A crack embedded in a constrained UD ply (Dvorak’s model)   210 
7.5.10 Misaligned fibers under compression      213 
7.7.1 Compressive strength of [+/-θ]s AS4/3502 predicted by LaRC03   218 
7.7.2 Polar coordinates of a point in the failure envelope    220 
7.9.1 Measurement of critical strain invariants in the matrix of IM7/epoxy  224 
7.9.2 Multi-scale analysis from laminates to constituents. 226 
7.9.3 Experimental stress-strain curves for IM7/977-3 lamina under tension.  227 
7.9.4 Configurations of unit cells a) 2 by 2 subcells b) 7 by 7 subcells   228 
7.9.5 Comparison of matrix phase J1 predicted by Gosse and HyperSizer  229 
7.9.6 J1 in the matrix phase predicted by HyperSizer under failure   232 
7.9.7 J1 in the matrix phase predicted by HyperSizer under failure   233 
7.9.8 Dealing with nonlinearity when implantation of SIFT.    235 
 

 
 



 

xi 

List of Tables 
TABLE  PAGE
2.1 Test Data Summary for Sets A, B and E      7 
2.2 Test failure loads, theoretical & predicted allowables for Data Sets A& B  14 
2.3 Test failure loads, theoretical & predicted allowables for Data Set E  15 
3.1 Summary of theoretical failure load vs. experimental result    18 
3.2 Individual test data summary for bonded doubler specimens    19 
3.3 Individual test data summary for single lap joint specimens    20 
4.1 HyperSizer Failure Test Data Summary      27 
4.2 Summary of HyperSizer CFs for Composite Failure Theories   40 
4.3 Properties of UD AS4/3502 from MIL-HBK-17 & NASA LaRC03 report  43 
4.4 Properties of UD IM7/8552 from MIL-HBK-17 NASA, Boeing/Collier  46 
5.1 Experimental load divided by the Phase I theoretical buckling load   49 
5.2 Experimental and theoretical buckling loads for HyperSizer & SS8 code  50 
5.3 Coefficients of Eq. 5.1.4 resulting from a linear regression    52 
5.4 Test specimen groups, correlation factors, and NASA knockdown factors  53 
5.5 Changed buckling results for Phase II correlation factor calculation   55 
5.6 Coefficients of Equation 5.3.4 resulting from a linear regression   55 
5.7 Summary of test groups, correlation factors, NASA knockdown factors  56 
5.8 HyperSizer theoretical, predicted and actual failure loads for 5 test articles  60 
5.9 Beer Can Data          63 
5.10 Beer Can Failure Allowables (crushing load)      65 
5.11 32 beer can buckling failure loads       66 
5.12 Beer Can Test Summary Failure Results      66 
6.3.1 Comparison of HyperSizer-BondJo to Hart-Smith A4EI    89 
6.3.2 Comparison of HyperSizer-BondJo with Stresscheck FEA    92 
6.4.1 Symbols used in BondJo theoretical development     98 
6.10.1 Summary of bonded doubler validation examples     165 
6.10.1 Comparison of HyperSizer-BondJo predicted to average test failure load  166 
6.10.2 Individual test data summary for bonded doubler specimens    166 
6.10.3 Comparison of HyperSizer-BondJo predicted to average test failure load  169 
6.10.3 Comparison of HyperSizer-BondJo predicted to average test failure load  173 
7.5.1 Summary of Puck IFF criteria for plane stress case     204 
7.5.2 Summary of Puck IFF criteria for 3D stress case     205 
7.5.3 Strength values and inclination parameters for typical FRP in Puck   206 
7.5.4 Comparison of up-to-date best failure theories for FRP    216 
7.7.1 Required UD material properties for LaRC03     217 
7.7.2 Optional UD material parameters for LaRC03     217 
7.8.1 Required UD material properties for Hashin failure criteria    222 
7.9.1 Failure loads for matrix dominated lamina (IM7/977-3 tape)   226 
7.9.2 Material properties of IM7 fiber and 977-3 resin     227 
7.9.3 Maximum point, phase average, and homogenized lamina effective strain 

invariants within the matrix phase of the matrix dominated UNT data  
227 

7.9.4 Comparison of predicted effective properties of IM7/977-3 (Vf = 0.60)  228 
7.9.5 MOS (J1critical = 2.34e-2) and predicted J1 in the matrix phase under 

failure loads 
228 



 

xii 

TABLE  PAGE
7.9.6 local strain fields (26 by 26 subcells) in the angle-ply lamina using 

J1critical = 2.34e-2 
230 

7.9.7 MOS (J1critical = 0.798 e-2) and predicted J1 in the matrix phase under 
failure loads         

231 

7.9.8 MOS (J1critical = 0.9548e-2) and predicted J1 in the matrix phase under 
failure loads  

232 

 
 

Acknowledgments 
This material is based upon work supported by the United States Air Force under Contract 
 

1. AFRL VA SBIR Phase I contract # F33615-01-M-3125 
2. AFRL VA SBIR Phase II contract # F33615-02-C-3216 
3. LM Aero LRSA Contract/PO # 7067581 
 

 



 

1 

PART A:  PHASE II PROPOSAL SOW 
 

1 Phase II SOW 
 
The SBIR approach to certification is based squarely on the building-block approach. The 
process is to establish the capability of each individual failure mode to be predicted in a robust, 
general, and reliable manner on a well controlled experimental test before moving to the next 
level of built-up hardware complexity. This process is much like the practice of commercial 
software development where individual modules (software components) are extensively tested 
individually before integrating into a larger system.  
 

1.1 TASK 1.  Demonstrate the certification process using 
HyperSizer for Air Force projects 

 
The plan is for LM Aero engineers at Fort Worth, TX and Marietta, GA, with extensive support 
and interaction with the PI, to use HyperSizer’s existing capabilities and those developed during 
Phase II for design and analysis of on-going Air Force projects. The demonstration of the process 
is proposed for all areas of interest to the Air Vehicles Directorate. A structural 
component/assembly based approach for demonstrating certification will be used. The emphasis 
is on reliable robust design that lends itself to dependable certification by analysis and test.  
 
The objective is to work a wide array of problems that will both acquaint LM Aero with 
HyperSizer and act to gain confidence in the analytic solutions. Successful demonstration of the 
certification by analysis process and the newly developed correlation test data defined in the 
other tasks of Phase II will provide a direct transition of the results to the private sector. A higher 
level of “certification by analysis” can only be incorporated in industry production practice by 
repeatedly demonstrating good correlation with verification test results.  To this end, LM Aero 
will conduct conceptual design trades using HyperSizer to compare with results from prior 
design and test results.  Structural designs are planned to be evaluated for applications ranging 
from fighter and transport aircraft, to emerging air vehicle designs for unmanned and future 
strike air platforms.   
 

1.2 TASK 2.  Calibrate State-of-the-Art Analyses to Experimental 
Tests 

 
This task is to be performed in two parts. The first part is collection of test data and will be 
performed by LM Aero for LM owned data and by the PI for all other non-LM data. The second 
part, performed by the PI, is the statistical processing of the data into two distinct correlation 
factors, γμ and γη, for use with a probabilistic method implementation as described in Task 3. 
Furthermore the collection of test data can be identified as new or existing. The new data will 
primarily be from on-going LM Aero projects that involve HyperSizer. This data will more 
likely be one or only a few test samples and not statistically relevant. To achieve large enough 
test samples to be statistically relevant for a given configuration and investigated failure mode, it 
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is expected that existing experimental test data will need to be collected for developing trends 
and identifying repeatable stochastic failure behavior.  
 
By collecting existing data, prior investment could be taken advantage of for meeting the 
technical objectives of this SBIR. The data then would be evaluated for completeness before 
attempting to perform an analysis for correlation purposes. Once proven to be complete data and 
useful for developing trends and identifying repeatable stochastic failure behavior, it will then be 
made available for appropriate transition to the private sector (separating if necessary based on 
existing proprietary ownership) and included in the HyperSizer commercial product. 
 
The two distinct correlation factors, γμ and γη, for each failure analysis were demonstrated in 
Phase I to provide advantages over current analysis practices.  This is summarized in Appendix 
A of this proposal. The first advantage is an ability to confidently predict average failure load 
and expected stochastic behavior. The second advantage is to be able to achieve uniform 
reliability for all failure modes and associated analysis method inaccuracies using the PM 
implementation defined in task 3.   

1.3 TASK 3.  Incorporate Probabilistic Methods in HyperSizer 
 
This work will be carried out by Collier Research Corp by the PI. The intent is to be able to 
achieve uniform reliability for each potential failure mode and associated analysis method by 
implementing the two distinct statistical correlation factors, γμ and γη quantified in task 2. γμ 
represents test average failure loads, and γη represents test coefficient of variation of test scatter.  
 
Value of Existing Test Data for Certification by Analysis 
The value of test data for meeting certification by analysis technical objectives has been 
demonstrated in Phase I. Therefore, at the very least, for Phase II plans are in place to modify 
HyperSizer to handle the statistical correlation factors, γμ and γη  defined from Task 2.  
 
As an example of the benefit, correlation factors for two different failure analyses have been 
calculated and shown in the table below. Thin shell cylindrical buckling is a widely known 
extreme case of analysis inaccuracy. This was chosen as a Phase I example to evaluate the limit 
of the proposed certification by analysis process. Based on test data, we now are able to predict 
the average cylindrical compression buckling load and a buckling load design-to allowable using 
the correlation factors, γμ and γη, respectively.  
 

1.4 TASK 4.  Develop Analytical Methods for Airframe Structural 
Analyses 

 
The focus of Task 4 is to fill holes in missing analysis capability needed for certification. This is 
to be accomplished three ways:  1) Implementing legacy and/or Lockheed Martin Aero (LM 
Aero) analysis methods into the HyperSizer framework through the plug-in capability; 2) 
Implementing HyperSizer into LM Aero’s design system using its Object Model; and 3) Develop 
new analysis failure methods in HyperSizer. 

Automating the software input process 
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Collier Research is continuously developing two capabilities that open up an opportunity for 
using HyperSizer as a certification by analysis tool.   The first of these, which is available in the 
current version of the software, is the ability of HyperSizer to act as a framework for 
incorporating higher fidelity, specialty analyses codes through software ‘plug-ins.’ The plug-in 
concept is illustrated in Figure 1.  These specialty codes, which can be found throughout the 
government and industry, are currently interfaced through manual ASCII file input and output 
which is generally inefficient. HyperSizer automates 
the I/O by connecting them into the data flow stream 
of the software. This ‘plug-in’ framework, which is 
designed for efficiency, tight thermo-structural 
analysis method coupling, and project data integrity, 
can live inside of larger general-purpose 
frameworks.  The ability to integrate into a 
framework is the second HyperSizer capability 
proposed to enhance the certification by analysis 
process.  Over the last year, an “Object Model” for 
HyperSizer has been developed as part of the High 
Performance Computing and Communications 
Program (HPCCP) at NASA Langley.  This Object Model allows HyperSizer to be interfaced to 
any number of framework environments, such as Advanced Modeling Language (AML) from 
Technosoft, Inc. or ModelCenter from Phoenix Integration.  

Inclusion of additional analysis method types into HyperSizer 
Other structural failure methods that are identified as being necessary for structural certification 
by the Air Force, Lockheed Martin and/or Collier Research will be developed and implemented 
natively in HyperSizer. This goes along with the “design-by-analysis” idea where the more 
analyses methods that are included early in the design process, the farther toward certification a 
structural design will be.  Our intention is not only to include intrinsic HyperSizer capabilities for 
these additional analysis types, but also to provide software integration protocols that would 
provide plug-in capabilities for these additional analysis types. 

1.5 TASK 5.  Document Methods and Equations and Provide in 
Electronic Format 

 
This work will be carried out by the PI and other research engineers from Collier Research 
Corp., with some limited support from both LM Aero facilities. The intent is to provide 
documentation in both typical report format and in electronic format that records the results of 
the SBIR research.   
 
The electronic format is planned to be in the most commonly used format for web based 
distribution and for integration with engineering software applications. The electronic version 
will be searchable and store all types of documentation such as text, equations, and graphics. In 
addition to Word format, another proposed format is PDF. The PDF documents will be stored in 
a data tree structure with HTML hyperlinks to different sections.  
 
The electronic format may also include a software facility, such as a database, for storing raw 
experimental test data and the resulting statistical reductions. This will aid in preserving and 
keeping the link to the specific test article data source intact over time as the software 
implements the derived correlation factors for a specific failure analysis. The raw data would 

Figure 1, HyperSizer Plug-Ins 

HyperSizer 
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include the article shape and dimensions, material properties, loadings, boundary conditions, and 
resulting failure load and strain gage readings.  
 
The need for the documentation has been expressed repeatedly by LM Aero and other companies 
over the years. Bob Olliffe interviewed many stress analysts in Marietta about analysis 
certification and engineering documentation. Bob says that 
 

No formal process appears to exist for the “certification” of software for use in 
performing detailed stress analysis on production aircraft programs.  Most computerized 
methods currently used are encoded hand analysis methods derived from the Lockheed 
Martin Stress Memo Manual (SMM), other in-house generated methods and practices, 
or generally accepted textbook physics-based solutions.  The impression that I received 
from the stress groups was that new analysis software should contain detailed 
documentation including examples for various types of analysis, applied loads, and 
geometry.  Some number of solutions would be generated using the software on 
applicable problems, and compared to solutions generated using current methods.  
Obviously, any improved correlation with actual test data compared to that generated 
using existing methods would be of great benefit. 

 
The documentation could also include use cases that address issues such as how to model 
stiffened panels and ringframes and their associated offsets. An important issue which always 
comes up is how FEMs with equivalent 2-D planar meshes compare to discrete 3-D modeling. A 
case in point is using CROD elements representing longerons vs. HyperSizer equivalent stiffness 
approach. Another example is the number of elements required in a panel bay to capture out-of-
plane pressure and bending moments.  
 
In summary, the bulk of this work will be directed to the actual generation of the documentation 
and not the development of the electronic facilities to retrieve and view it.  
 
The general categories of items to document in Phase II are 

• Test data  
• Analysis methods and equations 
• Modeling issues including the FEM mesh  
• Correlation to analysis predictions, and resulting correlation factors 
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PART B:  FOUR EXAMPLE FAILURE ANALYSIS CORRELATIONS TO 
TESTS 
 
The Validation Examples in Chapters 2-5 are provided to show the derivation of the appropriate 
correlation factors (CFs) used for the failure analyses in the Long Range Strike Aircraft (LRSA) 
demonstration example of Volume I, Chapters 10 and 11. The CFs are necessary pieces for the 
newly developed reliability analysis approach.  For the airframe example, three primary failure 
modes are investigated: cylindrical panel buckling, composite material strength, and honeycomb 
sandwich facesheet wrinkling [2.4]. Each of these potential failures is briefly discussed in this 
section in terms of their theoretical background and test data correlation. It will be shown that 
some of these failures have larger observed scatter in test response and in analytical predictive 
accuracy. For these failure modes and associated analyses that provide less confidence, the 
proper assignment of correlation factors (CFs) will allow them all to be used with the same 
reliability to achieve consistent structural integrity during preliminary design sizing.   
 
The process starts with collecting test data for unique failure modes (e.g. honeycomb facesheet 
wrinkling) and identifying a Probability Density Function (PDF) signature that is repeatable and 
unique to that mode’s nature. The PDF signature represents expected test data scatter for a given 
material type (metallic vs. composite) and loading. Included with the formulation of the PDF is 
identification of intrinsic parameters used to scale the analytical prediction to cause a better 
statistical fit of test data. At this time, normal distributions are assumed as probability density 
functions. This process can rely on existing “building block” test data to form the basis of 
analytical prediction confidence. We start with a simplistic correlation of honeycomb facesheet 
wrinkling test data, then to laminate strength, and end with a fairly complex cylindrical panel 
buckling correlation.  
 
 
The discussed analysis methods in order of increasing complexity and insight: 
 

• Honeycomb 
• Bonded joint 
• Composite material strength 
• Panel buckling 
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2  Correlation to Test: Honeycomb Sandwich Facesheet 
Wrinkling 

 
Sandwich structures with thin facesheets and 
lightweight cores are prone to a type of local failure 
known as facesheet wrinkling. The term wrinkling 
refers to local, short wavelength buckling 
phenomenon of the facesheet, with mode shapes having wavelengths up to the thickness of the 
core. The small buckling wavelength of the wrinkling mode results in the allowable load being 
insensitive to structural boundary conditions and curvature. Sandwich structures exhibit little or 
no post-wrinkling load carrying capability, therefore wrinkling failure is typically catastrophic. 
As a consequence, accurate prediction of wrinkling is important for quantifying structural 
integrity. 
 

2.1 Theory 
 
The equation for sandwich wrinkling with isotropic (e.g. foam) cores is 
 
 

  (2.1.1) 
 
and for honeycomb cores the recommended equation is 
 
 

(2.1.2) 
 
 
References [2.1] and [2.2] provide the suggested factors to use with the wrinkling allowable 
stress equations, which are:  
 
 
 
 
These k1 and k2 values are based on theory and are not based on empirical correlations.  
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2.2 Test Data Description 
The following series of compressive panel tests 
performed in 2004 for sandwich wrinkling, Fig. 2.1, are 
used for correlation. The test articles were composed of 
either two or three ply composite facesheets with either 3 
pcf Nomex honeycomb or Divynicell H45 Foam Cores. 
The facesheet and core properties and test conditions for 
each set of data are summarized in Table 2.1. Sets A and 
B contain identical panel designs but with different 
loading (0° in Set A, and 90° in Set B). 
 

Table 2.1, Test data summary for sets A, B and E.  The panel designs  
for Sets A and B are identical but the loadings are different 

 
Fig. 2.2 a), b) and c) shows the summary of test results compared to theoretical predictions.  The 
first four test points failed prematurely (concluded to be due to manufacturing defects) and were 
not included as part of the correlation procedure. 
 

 

Fig. 2.2, Test results for a) Set A “0° core”, and b) Set B “90° core”. The red line indicates the 
theoretical allowable, and the blue line indicates the average test failure load.  The average test 

failure load for Set A does not include the four premature failure test data points. 
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Fig. 2.1, Wrinkling failure test article 

Facesheet Facesheet Facesheet Core Core Core Avg Test
Validation Thickness Ex Ey Facesheet Thickness Gxz Ez Strength Failure

Set Specimen Description (in) (psi) (psi) nuxy (in) (psi) (psi) (lbs/in) Mode Comment

A
2 Ply Facesheets,
3.0 lb Nomex 0° direction 0.015 9.20E+06 9.20E+06 0.06 0.5 5200 20000 1032 Wrinkling

4 (of 6) Bad tests - 
(premature failures)

B
2 Ply Facesheets,
3.0 lb Nomex 90° direction 0.015 9.20E+06 9.20E+06 0.06 0.5 2500 20000 1025 Wrinkling * Good data

C
3 Ply Facesheets,
3.0 lb Nomex 0° direction 0.0276 7.90E+06 7.90E+06 0.06 0.5 5200 20000 1935 Wrinkling * Good data

D
3 Ply Facesheets,
3.0 lb Nomex 90° direction 0.0276 7.90E+06 7.90E+06 0.06 0.5 2500 20000 1568 Crimp * Good data

E
2 Ply Facesheets,
H45 Divynicell Foam 0.015 9.20E+06 9.20E+06 0.06 0.5 2610 NA 862 Wrinkling * Good data
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2.2.1 Sample Theoretical Calculation 
 
Using the material properties given in Table 2.1 for 
Sets A and B, and noting that the core is 
honeycomb, the theoretical wrinkling stress is 
calculated from Equation 2.1.2, 
 
The theoretical wrinkling allowable load is the wrinkling stress times the facesheet thickness.  
For the wrinkling stress in the 90° direction, a 0.95 factor, suggested by Bruhn [2.3], is used to 
account for the reduction in strength in the perpendicular core direction. 

 
 

Fig. 2.2c, Test results for c) Set E “Isotropic (Foam) Core”   The red line indicates the theoretical 
allowable, and the blue line indicates the average test failure load.  The theoretical and test values 

are much closer for the isotropic core wrinkling predictions than for the honeycomb core. 
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2.3 Test Data Correlation for Honeycomb Sets A and B 
The eight 'good' test points from sets A and B are not enough data to be statistically relevant. 
However, these series of tests were specific to a particular fabrication process and as such do 
provide useful correlation to a particular design that will be made with these honeycomb panels. 
For such a use, the following correlation then becomes valuable for assessing reliability. 
 
The correlation equation for sandwich wrinkling (Equation 1.1.3 from Volume 3, shown below 
in Fig. 2.3) allows for an overall γμ that depends on the actual sandwich design by including the 
R term.  This parameter depends on the relative ratio of stiffness and core strength with facesheet 
and core combinations.  However, because all of the test points in Sets A and B use the same 
honeycomb design, there were no variations in R that allow us to determine proper correlation 
factors to make use of this relation.  Therefore, we will use a simpler correlation that does not try 
to account for different sandwich designs, but instead treats all sandwich panels with the same 
effective knockdown.  In this case, μ3 is set to an arbitrarily high number, say 1,000,000, and μ1 
is determined from the test data. 
 
By averaging the Test Failure Loads from Figs. 2.2a and 2.2b, we calculate the average failure 
load of the eight tests as 1027 (lb/in). The theoretical average prediction is (2*1828+6*1736)/8 = 
1759 (lb/in).  The proper knockdown is then the average failure load divided by the average 
theoretical allowable, or 1027/1759 = .5839. First, if we were to plot the histogram of 
uncorrelated analysis to test comparisons, we indeed see in Fig. 2.3 both the theoretical T and 
predicted P = 0.5839.  
 

 
 

Fig. 2.3, P and T equal the same value because the test data hasn’t yet been reanalyzed with the 
established CFs. Note the dashed curve is the mathematical plot of a normal PDF using the standard 

deviation of this test data.
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To make use of this correlation, we then would set μ1 = 0.5839, however, instead of using 
0.5839, let’s use a value of μ1 = 0.59 to prevent some of the ratios from becoming unity, which 
will better illustrate the histogram process with numbers. After doing so, and then rerunning the 
software, a new histogram is generated that quantifies how well the correlated predicted analysis 
matches test data.  
 

 
Referring to Fig. 2.4 we see at the top of the histogram that P=0.9897. This value is a result of 
the CFs shown in the bottom left.  Therefore the predicted average is (1/0.9897) higher than the 
test failure load average as indicated by the title failure load/HyperSizer predicted on the 
horizontal axis. Since the average of the eight tests = 1027 (lb/in), the predicted failure load 
average is equal to 1027/0.9897 = 1037.7 (lb/in). On the histogram graph, the definition of μ1 = 
(predicted/theoretical) = (P=0.9897 / T=1.677) = 0.59, and as a check with the actual allowables: 
(predicted/theoretical) = (1037.7/1759) =0.59 .  
 
Again referring to Fig. 2.4, the dashed vertical black lines (moving from left to right) represent 
3σ, 2σ, and 1σ. Using these lines, we calculate standard deviation value, σ = 0.9897-0.888 = 
0.1017, and assign this value to η. To determine the allowable for 99.865% reliability, K=3.00 
(see the Master Table at the beginning of the document), the resulting average strength allowable 
is 1037.7*(0.9897 - 3.0*0.1017) = 710.4 (lb/in). As a final check, using the 99.865% reliability 
numbers from Fig. 2.5, (701.3*6 + 738.2*2)/8= 710.5.  So in summary, the average allowables 
are: theoretical 1759 (lb/in), predicted 1038 (lb/in), and for 99.865% reliability 710 (lb/in).  
 
 
 
To determine the theoretical, predicted and 99.865% (3σ) allowables for sets A and B 
individually, 1025 (lb/in) was entered on the HyperSizer FBD load entry tab for each component 

Fig. 2.4, P and T are now different values because the test data has been 
reanalyzed with the established CFs displayed in the bottom left boxes. 

μ1=(P=0.9897 / T=1.677)=0.59.  
η=0.9897-0.888 = 0.1017 
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and the analysis was performed.  The allowables are then determined from the following 
calculations where the underlined numbers are margins-of-safety (MS) computed by HyperSizer. 
 
Set A  

Theoretical = 1025*(1 + .7831 ) = 1827.7,   a check see above 
Predicted = 1025*(1 + .05204)= 1078.34, a check 1827.7*.59 = 1078.34 
Reliability 3σ =  1025*(1  - .2798 ) = 738.2, a check 1078.34(0.9897-3*.1017) =738.2 

Set B  
Theoretical = 1025*(1 + .694 )    = 1736.3,   a check see above 
Predicted = 1025*(1  - .00056) = 1024.4,   a check 1736.3*.59 = 1024.4 
Reliability 3σ =  1025*(1  - .3158)   = 701.3,     a check 1024.4(0.9897-3*.1017) =701.3 
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Fig. 2.5, Test results for a)Set A “0° core”, and b) Set B “90° core”. The red line indicates the theoretical 

allowable.  The blue line now indicates the predicted allowable, and the green line the allowable to achieve 
99.9% reliability. The distance between the red and green lines give a visual cue for the amount of 

knockdown required to obtain necessary reliability. 

b) 
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2.4 HyperSizer Setup 
Data sets A, B and E were added to the HyperSizer V&V database into the “Honeycomb and 
Foam Sandwich Wrinkling Test Validation” workspace.  The two unique layup/core 
combinations (Sets A&B, and Set E) were placed into two HyperSizer groups.  Within those 
groups, the cases were divided between two components for 0 degree and 90 degree loading.  
Therefore, each component represents a single layup/core/loading combination. 
 

 
 

 
 
 
For each component, the average test failure 
load was entered on the FBD tab as listed in 
Table 2.1 under the column, “Test Strength”. 
 
 
 

The individual test points were 
entered into the HyperSizer 
database by computing a margin of 
safety for each test data point,  
 

1−=
LoadApplied

LoadFailureTestMS  

 
and entering these margins into 
HyperSizer’s Project Test Data 
form.  For example, the first 'good' 
data point in Fig. 2.2a failed at 
1015 lb/in.  The margin of safety 
for an applied load of 1025 lb/in. is  
 

00976.01
1025
1015

−=−=MS  

 
The test data points are listed as the 
vertical blue bars in Fig. 2.2 and 
are also listed in Tables 2.2 and 2.3 
under the column, “Test”. 
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2.5 The μ3 Correlation Factor 
As mentioned earlier, the overall correlation factor, γμ, allows for a knockdown that depends on 
the actual design being analyzed.   This is accomplished with the R and μ3 parameters in 
Equation 1.1.3 from Volume 3 (repeated here).   
 
 
 
 
 
 
 
Because all of the test panels for which we have failure data are of the same design, the R value 
is the same for each panel.  Therefore not enough information is available for determining 
appropriate correlation factors for a general honeycomb design.  A μ3 value can be specified that 
makes this correlation work well for this specific set of test data.  However, because R is 
constant for this data set, this is really the same as specifying a constant value for μ1.   
 

( )( )
( )( ) 923.28

3255.0
20000015.025.0

=
−

=
psiin

psiinR     (2.5.1) 

 
Using this constant value of R, we can find an equivalent μ3 so that the third term in Equation 
1.1.3 has the same effect as entering a constant μ1=0.59.   

 

( )923.281
159.0

1
1

3

3
1

μ

μ
μ

+
=

+
=

R      (2.5.2) 

 
Solving Equation (2.5.2) gives μ3 = 0.024.  
 
Using this value is dangerous, however, because we have no idea how this relation will work for 
any other designs.  In other words, if we tried to use this same CF for other honeycomb designs, 
we would be extrapolating the relation outside the bounds from which it was derived. 
 
This was actually mistakenly tested and the consequences of the extrapolation were seen.  
Equation 1.1.3 with μ1=0 and μ3=0.024 was applied to a typical titanium honeycomb panel, and 
the knockdown that resulted for wrinkling was on the order of 0.1 (that is, the predicted 
wrinkling load was 10 times less than the theoretical).  This is clearly not correct because the 
correlation was not interpolating within the bounds of the composite honeycomb test data.   
 
If comprehensive test data is available for a particular honeycomb material/fabrication process, 
then a value of μ3 can be derived to fit that set of data.  If only limited test data is available, we 
recommend using a constant value for γμ by specifying a value for μ1 and removing the 
effect of R by setting μ3 to a very large number. 
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2.6 Simple Verification of HyperSizer Statistics 

2.6.1 Honeycomb Wrinkling Correlation with μ1 = 0.59; μ3 = 1,000,000 
Table 2.2 lists the test data as entered into an Excel Spreadsheet.  Simple statistical analysis is 
performed to verify the HyperSizer correlations.  The Avg and StdDev values are Excel 
statistically processed values derived from the last column, "Test/Pred".  The three black vertical 
lines in the HyperSizer histogram (Fig. 2.6) represent 1, 2, and 3 standard deviations from the 
mean value, therefore the HyperSizer calculated value for η = 0.9897–0.888 = 0.1017.    The 
average and standard deviation from the spreadsheet and the HyperSizer histogram agree, 
verifying the statistical implementation of HyperSizer for this case. 
 

Table 2.2, Test failure loads, theoretical and predicted allowables for Data Sets A and B.  
The first four test articles in Set A failed prematurely and were not used. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2.6, Histogram from the HyperSizer interface showing the eight honeycomb 
sandwich data points in Sets A and B.  One fails below the 1σ (84%) threshold. 

 

Test Data Points Case Test Test MS HS Theo HS Pred Test / Pred
Component 1 0°-1 867 -0.1541 1828 1078 0.8040
2/Nomex/2; 0° 0°-2 766 -0.2527 1828 1078 0.7103 <-- Not included - "bad data - premature failures

0°-3 791 -0.2283 1828 1078 0.7335
0°-5 639 -0.3766 1828 1078 0.5926
0°-6 1015 -0.0098 1828 1078 0.9413
0°-7 1050 0.0244 1828 1078 0.9737

Component 2 90°-1 886 -0.1356 1736 1024 0.8649
2/Nomex/2; 90° 90°-2 1182 0.1532 1736 1024 1.1538

90°-3 1141 0.1132 1736 1024 1.1138
90°-4 915 -0.1073 1736 1024 0.8932
90°-5 976 -0.0478 1736 1024 0.9527
90°-6 1049 0.0234 1736 1024 1.0240

Avg 0.9897
StdDev 0.1017 <-- Eta for honeycomb core

At K=1, Reliability = 84%  
(≈5/6 ), therefore we expect one 
failure out of every six specimens.  
Out of these 8 specimens, one 
does fail below the K=1 threshold 
as shown in yellow. 
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2.6.2 Foam Sandwich Wrinkling Correlation with μ1 = 0.88; μ3 = 1,000,000 
The theoretical predictions for the isotropic (foam) core wrinkling analysis were substantially 
closer than those for the honeycomb core.  Therefore the required correlation knock down was 
not as severe. 
 
Once again, not enough variation in test data was available to derive a proper value for μ3, 
therefore γμ is assumed to be constant by setting μ1=0.88 and μ3=1,000,000. 
 
As with the spreadsheet and histogram from the honeycomb case, the values calculated from this 
spreadsheet and HyperSizer histogram once again agree, verifying the HyperSizer calculation. 
 
 

Table 2.3, Test failure loads, theoretical and predicted allowables for Data Set E.   
Test Data Points Case Test Test MS HS Theo HS Pred Test / Pred
Component 5 0°-1 865 0.0058 985 867 0.9976
2/H45/2; 0° 0°-2 804 -0.0651 985 867 0.9273

0°-3 845 -0.0174 985 867 0.9746
0°-4 987 0.1477 985 867 1.1384

Component 6 90°-1 769 -0.1058 985 867 0.8869
2/H45/2; 90° 90°-3 888 0.0326 985 867 1.0242

90°-4 879 0.0221 985 867 1.0138
Avg 0.9947

StdDev 0.0800 <-- Eta for isotropic core  
 
 

 
 

Fig. 2.7, Histogram from the HyperSizer interface showing the seven foam 
sandwich data points in Set E. 
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3 Correlation to Test: Bonded Joint Failure; Delamination, 
Fiber Fracture 

The validations included here involve three different test programs that are used to validate and 
determine CFs for two of the bonded joint failure methods implemented in HyperSizer.  The two 
failures that are considered are: 

a) “Joint, Bonded, Delamination, Peel, Longitudinal & Transverse Shear, Axial and 
Transverse” 

b) “Joint, Bonded, Fracture, Max Stress 1 direction” 
 
The three test cases used to validate these methods and determine CFs are: 

1) Five stepped bonded doubler joint specimens built and tested by NASA [3.1] (used for 
the bonded joint delamination failure mode, a) 

2) Six bonded doubler joint specimens tested by Cheuk and Tong [3.2] (used for the 
bonded joint fracture failure mode, b). 

3) Three bonded single lap joint specimens also tested by Cheuk and Tong [3.3] (used for 
the bonded joint fracture failure mode, b). 

3.1 Theory 
For both correlations, the first step is to calculate the stresses throughout the joint using the 
HyperSizer joint analysis program, which is described in Chapter 6. 
 
For the NASA stepped bonded doubler example, the failure mode chosen for correlation is the 
one chosen as the controlling failure mode, “Joint, Bonded, Delamination, Peel, Longitudinal & 
Transverse Shear, Axial and Transverse” (see Equation 6.5.2.9, Section 6.5 for a description of 
the joint failure methods).  This method is a 3D extension of an equation presented by Tong 
[6.5.10] and predicts delamination failure in the joint when the following interaction relation 
becomes true, 
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(3.1.1) 

where Xt, Xc, are the ply allowables in the fiber direction for tension and compression, Yt, Yc are 
the allowables in the transverse direction, and Q, R13, and R12 are allowable shear strengths. In 
HyperSizer the material labels are: (Q = interlaminar Fsu23, R13 = interlaminar Fsu13, and R12 = 
In-plane Fsu12) 
 
For the Cheuk and Tong bonded doubler and single lap joint problems, the failure mode chosen 
for correlation is “Joint, Bonded, Fracture, Max Stress 1 direction” (See Equation 6.5.2.13) as 
recommended by Cheuk and Tong [3.2].  Note that no other failure analyses could be performed 
for this specific test data because no material strength data other than Xt was provided.  This 
method predicts fracture failure when,  

11 ≥
tX

σ
     (3.1.2) 
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3.2 Test Data Description 
Three test validations are used to derive CFs for bonded 
joint methods.  The first test, performed by NASA [3.1] on 
stepped bonded doubler joints, is used to derive correlation 
factors for Delamination failure modes.  The second and 
third tests, both by Cheuk and Tong involve test programs 
featuring a bonded doubler joint [3.2] and a single lap joint 
[3.3].  Each of these tests is modeled using HyperSizer 
considering both linear and non-linear models for the joint 
adhesive layer.  These test validations are discussed in 
detail in Volume 3, Chapters 9, 10, and 11.   

3.2.1 NASA Stepped Bonded Doubler Tests 
 

 
 
 

Table 3.1, Summary of theoretical failure load vs. experimental result [3.1] 
Experiment HyperSizer Theoretical 

Linear Adhesive Nonlinear Adhesive  
Number 

 
Initial 
Failure 

Load2 (kN) 

Theoretical 
Failure 
Load 
(kN) 

Test
lTheoretica  

Theoretical 
Failure 
Load 
(kN) 

Test
lTheoretica  

1 16.2 13.5 0.83 ≈ 15.4 0.95 
2 16.5 13.5 0.82 ≈ 15.4 0.93 
3 18.1 13.5 0.75 ≈ 15.4 0.85 
4 18.3 13.5 0.74 ≈ 15.4 0.84 
5 19.8 13.5 0.68 ≈ 15.4 0.78 

Average 17.8 13.5 0.76 ≈ 15.4 0.87 

Fig. 3.2, Schematics of a skin/flange specimen (bonded doubler) studied by Krueger et 
al. [3.1].  The specific material stiffnesses and strengths are listed in Volume3, 
Chapter 10. 

All dimensions in mm 

25o 

1.776 3.862

Skin: [45/-45/0/-45/45/90/90/-45/45/0/45/-45] IM7/8552 tape, tply = 0.148  
Stiffener: [45/0/45/0/45/0/45/0/45] IM7/8552 plain woven fabric, tply = 0.212 
Adhesive: Grade 5 FM300, thickness = 0. 178 mm

177.8

Width = 25.4 50.8

Fig. 3.1, Delamination failure in the 
NASA stepped bonded doubler example 
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3.2.2 Cheuk and Tong Bonded Doubler Joint Tests 
 

 
Table 3.2, Individual test data summary for bonded doubler specimens [3.2]. 

Experiment HyperSizer Theoretical 
Linear Adhesive Nonlinear Adhesive  

Number 
 
Final 
Failure  
Load (kN) 

Theoretical 
Failure 
Load 
(kN) 

Test
lTheoretica  

Theoretical 
Failure 
Load 
(kN) 

Test
lTheoretica  

1 19.162 13.5 0.70 14.4 0.75 
2 18.272 13.5 0.74 14.4 0.79 
3 17.502 13.5 0.77 14.4 0.83 
4 18.987 13.5 0.71 14.4 0.76 
5 18.765 13.5 0.72 14.4 0.77 
6 19.048 13.5 0.71 14.4 0.76 

Average 18.623 13.5 0.73 14.4 0.77 
 
 

3.2.3 Cheuk and Tong Bonded Single Lap Joint Tests 

 

P 

50 100 100 

1.72 
0.16 

All dimensions in mm 

Adherend 1 

Adherend 2

Fig. 3.4, Schematic of bonded single lap joint test specimens studied by Cheuk and Tong.  
The specific material stiffnesses and strengths are listed in Volume 3, Chapter 11.  

Width = 25.4 

 z 

x 

3.44 

45 95

T300/934 plain woven [0]8s

T300/934 plain woven [0]8s 

Fig. 3.3, Schematic of bonded doubler test specimens studied by Cheuk and Tong.  
The specific material stiffnesses and strengths are listed in Volume 3, Chapter 9 [3.2]. 

 Adherend 13.44 

0.16 

Width = 12.2 

Adherend 2 a 

All dimensions in mm. 
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Table 3.3, Individual test data summary for single lap joint specimens [3.3] 
Experiment HyperSizer Theoretical 

Linear Adhesive Nonlinear Adhesive  
Number 

 
Final 

Failure 
Load (kN) 

 
Initial 
Failure 

Load (kN) 

Theoretical 
Failure 
Load 
(kN) 

Test
lTheoretica  

Theoretical 
Failure 
Load 
(kN) 

Test
lTheoretica  

1 14.374 7.2 6.85 0.95 6.82 0.95 
2 14.064 7.2 6.85 0.95 6.82 0.95 
3 14.076 7.2 6.85 0.95 6.82 0.95 

Average 14.171 7.2 6.85 0.95 6.82 0.95 
 

3.2.4 Sample Theoretical Calculation 
This calculation shows the failure load for the Cheuk and Tong bonded doubler joint using the 
failure mode, “Joint, Bonded, Fracture, Max Stress 1 direction”.  The authors report the adherend 
ply strength in the 1 direction as Xt = 518 MPa, and failure is indicated when: 
 

11 >
tX

σ        (3.2.1) 

 
To determine the failure load, an arbitrary load of 10 kN (unit load = 819.6 N/mm) was applied 
to the joint and HyperSizer was executed.    The stress calculated in the fiber direction for the 
surface ply of the facesheet (adjacent to the adhesive) is shown in Fig. 3.5.  The peak σy stress 
from that plot is 383.9 MPa.  The margin of safety is then calculated as: 
 

3493.00.1
9.383

518

0.1
1

=−=

−=
σ

tXMS
     (3.2.2) 

 
Using this margin of safety, the theoretical failure load is calculated by multiplying the applied 
load by (1.0 + MS).   
 

( )( ) kNkNPfailure 493.13103493.00.1 =+=            Theoretical Failure Load for Adherend Fracture 
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Fig. 3.5, Stress in the facesheet outer ply (adjacent to the adhesive) for the 
Cheuk and Tong bonded doubler joint example.  This stress results from 
an applied load of 10 kN. 
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3.3 Test Data Correlation 

3.3.1 Correlation Category: Joint, Bonded, 
Adherend Delamination (Linear) 

We calculate the average experimental failure load of the 
five tests as 17.78 kN (700 N/mm). Because there is only 
one test configuration, the theoretical average prediction 
is simply the single theoretical calculated value of 533.4 
N/mm.  The proper knockdown is then the average 
failure load divided by the average theoretical allowable, 
or 700/533.4 = 1.312.   
 
The value of knockdown being greater than 1.0 indicates 
that instead of knocking down, we will instead be 
scaling up the theoretical calculation to match test data. 
 
If we were to plot the histogram of uncorrelated analysis to test comparisons, we indeed see in 
Fig. 3.6 both the theoretical T and predicted P = 1.312.  
 

 
To make use of this correlation, we then would set μ1 = 1.312, however, instead of using 1.312, 
let’s use a value of μ1 = 1.32 to prevent some of the ratios from becoming unity, which will 
better illustrate the histogram process with numbers. After doing so, and then rerunning the 
software, a new histogram is generated, shown in Fig. 3.7, which quantifies how well the 
correlated predicted analysis matches test data.  
 

Fig. 3.6, P and T equal the same value because the test data hasn’t yet been reanalyzed with the 
established CFs. Note the dashed curve is the mathematical plot of a normal PDF using the standard 
deviation of this test data. 

 

This discussion presents theoretical, 
predicted and reliability allowable 
loads for the entire data set and uses 
these values to illustrate the correlation 
process.  This procedure only works, 
however, if the theoretical values for 
all test articles are equal or nearly 
equal.  In the next section, some of the 
test articles have very different 
theoretical values and presenting one 
value for theoretical, predicted, and 
reliability does not make sense.
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Referring to Fig. 3.7 we see at the top of the histogram that P=0.9942. This value is a result of 
the CFs shown in the bottom left.  Therefore the predicted average is (1/0.9942) higher than the 
test failure load average as indicated by the title failure load/HyperSizer predicted on the 
horizontal axis. Since the average of the eight tests = 700 (N/mm), the predicted failure load 
average is equal to 700/0.9942 = 704.1 (N/mm). On the histogram graph, the definition of μ1 = 
(predicted/theoretical) = (P=0.9942 / T=0.7532) = 1.32, and as a check with the actual 
allowables: (predicted/theoretical) = (704.1/533.4) =1.32 .  
 
Again referring to Fig. 3.7, the dashed vertical black lines (moving from left to right) represent 
3σ, 2σ, and 1σ. Using these lines, we calculate standard deviation value, σ = 0.9942-0.912 = 
0.0822, and assign this value to η.  (By carrying more significant digits, the value of η is actually 
0.0819).   To determine the allowable for 99.865% reliability, K=3.00 (see the K vs Reliability 
Table at the beginning of the Volume 3), the resulting average strength allowable is 
704.1*(0.9942 - 3.0*0.0819) = 527 (N/mm).  
 
To determine the theoretical, predicted and 99.865% (3σ) allowables from HyperSizer for this 
data set, an arbitrary load of 10 kN (=393.7 N/mm) was entered on the HyperSizer FBD load 
entry tab and the analysis was performed.  The allowables were then determined from the 
following calculations where the underlined numbers are margins-of-safety (MS) computed by 
HyperSizer. 

Theoretical = 393.7 *(1 + .3548 ) = 533.4,   a check see above 
Predicted = 393.7 *(1 + .7883)  = 704.1, a check 533.4*1.32 = 704.1 
Reliability 3σ =  393.7 *(1 + .3386 ) = 527.0, a check 704.1*(0.9942 - 3.0*0.0819)=527 
 

So in summary, the average allowables are: theoretical 533.4 (N/mm), predicted 704.1 (N/mm), 
and for 99.865% reliability 527 (N/mm).  
 

Fig. 3.7, P and T are now different values because the test data has been 
reanalyzed with the established CFs displayed in the bottom left boxes. 

μ1=(P=0.9942 / T=0.7532)=1.32.  
η=0.9942-0.912 = 0.0822
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3.3.2 Correlation Category: Joint, Bonded, Adherend Fracture (Linear)  
This second set of test data comes from two completely different test cases with different 
materials, geometry and loadings.  Therefore the explanations made in section 3.3.1 where we 
compared average failure loads for the entire data set will not make sense in this case.  Here we 
can only work with the failure loads after they have been normalized by either the theoretical or 
the predicted values.  To determine the knockdown, we start with the average of the test divided 
by theoretical ratio, which is 1.2705.   This is the proper “knockdown” used to arrive at the 
HyperSizer predicted value. If we plot the histogram of uncorrelated analysis to test 
comparisons, we see in Fig. 3.8 both the theoretical T and predicted P = 1.271 (Note, this value 
has been truncated to three decimal places, the actual value is 1.2705).  
 

 
 
To make use of this correlation, we would set μ1 = 1.2705, however, instead of using 1.2705, 
let’s use a value of μ1 = 1.28 to prevent some of the ratios from becoming unity, which will 
better illustrate the histogram process with numbers. After doing so, and then rerunning the 
software, a new histogram is generated, shown in Fig. 3.9, which quantifies how well the 
correlated predicted analysis matches test data.  
 

Fig. 3.8, P and T equal the same value because the test data hasn’t yet been reanalyzed with the 
established CFs. Note the dashed curve is the mathematical plot of a normal PDF using the standard 

deviation of this test data.
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The predicted failure loads are determined by multiplying the theoretical failure loads by the 
established knockdown factor of 1.28.  The theoretical values are 1106 N/mm and 270 N/mm for 
the bonded doubler joint and single lap joint tests respectively.  This gives predicted values of 
(1.28)(1106) = 1416 N/mm and (1.28)(270) = 345 N/mm for the two test panels.  These values 
are confirmed by allowing HyperSizer to calculate margins of safety and using these to back out 
the same predicted failure loads as shown on the following page. 
 
Again referring to Fig. 3.9, the dashed vertical black lines (moving from left to right) represent 
3σ, 2σ, and 1σ. Using these lines, we calculate the standard deviation value, σ = 0.9926-0.861 = 
0.1316, and assign this value to η.  (By carrying more significant digits, the value of η is actually 
0.1318).   To determine the allowable for 99.865% reliability, K=3.00 (see the K vs Reliability 
Table at the beginning of the Volume 3), the resulting allowable strengths are calculated from,  
(predicted) * (P – 3η) = 1416*(0.9926 - 3.0*0.1318) = 845 (N/mm) for the bonded doubler joint 
and 345*(0.9926 - 3.0*0.1318) = 206 (N/mm) for the single lap joint.   These numbers also 
match those calculated by HyperSizer as shown on the following page. 

Fig. 3.9, P and T are now different values because the test data has been 
reanalyzed with the established CFs displayed in the bottom left boxes. 

μ1=(P=0.9926 / T=.7755)=1.28.  
η=0.9926-0.861 = 0.1316 

 



 

26 

 
To determine the theoretical, predicted and 99.865% (3σ) allowables from HyperSizer for these 
two data sets, arbitrary loads of 10 kN (819.7 N/mm) and 5 kN (196.9 N/mm) were entered for 
the bonded doubler and single lap joint respectively on the HyperSizer FBD load entry tab.  The 
allowables are determined from the following calculations where the underlined numbers are 
margins-of-safety (MS) computed by HyperSizer. 
 
Bonded Doubler 

Theoretical = 819.7 *(1 + .3492 ) = 1106,    
Predicted = 819.7 *(1 + .7270)  = 1416, a check 1106*1.28 = 1416  
Reliability 3σ =  819.7 *(1 + .03137 ) = 845, a check 1416*(0.9926 - 3.0*0.1318)=845  

 
In summary, the average allowables are: theoretical 1106 (N/mm), predicted 1416 (N/mm), 
and for 99.865% reliability 845 (N/mm).  

 
Single Lap 

Theoretical = 196.9 *(1 + .3701 ) = 270,    
Predicted = 196.9 *(1 + .7538)  = 345, a check 270*1.28 = 345  
Reliability 3σ =  196.9 *(1 + .04736 ) = 206, a check 345*(0.9926 - 3.0*0.1318)=206  

 
In summary, the average allowables are: theoretical 270 (N/mm), predicted 345 (N/mm), 
and for 99.865% reliability 206 (N/mm).  
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4  Correlation to Test: Composite Laminate Strength 
This chapter will show how validation to test data can be visually inspected using failure 
envelopes and histograms, and can also be quantified with the HyperSizer Correlation Factors.  

4.1 Validation Test Data 
Established correlation factors (CFs) for the Tsai-Hahn and LaRC03 failure criteria are reported 
in this section. For all other failure criteria, refer to Vol 3, Chapters 3 and 4. The data was 
collected, CF’s were quantified, and figures are provided of the resulting histograms to visually 
see performance of each failure theory. The presented CFs are based on 130 tests of either 
unidirectional ply or [±θ] laminates.  

4.1.1 Source of Test Data 
The validation cases included in this chapter are from the World Wide Failure Exercises 
(WWFE), [4.1], referred to as cases 1 through 7, two additional failure envelope unidirectional 
cases (cases 8 and 9) from [4.10], and a ± θ layup of AS4/3502 material (case 10) reported by 
[4.2, 4.3] and described in detail in this section. Table 4.1 summarizes the test cases. 
 
Table 4.1, HyperSizer Failure Test Data Summary. Refer to the contents of Vol 3, Ch 3 & 4 

 

Case WWFE  
Layup 

Loading 
Interaction 

Prog. 
Failure Material HyperSizer 

Workspace 

1  Unidirectional [0°] σy-τxy  E-glass/LY556/HT907 A 
2  Unidirectional [0°] σx-τxy  Gr/Ep T300/BSL914C A 
3  [±85°] σx-σy  E-glass/MY750 A 
4  [-30/+30/90]s σx-σy 

 E-glass/LY556/HT907 A 
5  [-30/+30/90]s σx-τxy 

 E-glass/LY556/HT907 A 
6  [+55/-55]s σx-σy  E-glass/MY750 A 
7  [0/-45/+45/90]s σx-σy 

 Gr/Ep AS4/3501-6 A 
8  Unidirectional [0°] σy-τxy  Gr/Ep AS4_55A B 
9  Unidirectional [0°] σy-τxy  Gr/Ep T800_3900-2 B 

10   [±θ] Loading on 
[±θ] 

 Gr/Ep AS4/3502 B 

       
 
A= WWFE test data, HyperSizer Workspace: World Failure Exercise Composite Failure 
B= Non-WWFE test data, HyperSizer Workspace: LaRC03 Workspace 
 
 
Laminate failure strengths are calculated using ply strengths and ply based failure criteria. The 
published test data are for final failure instead of initial failure. Initial failure is also referred to as 
damage initiation and as first-ply-failure. For unidirectional laminates and for [±θ] layups where 
all plies fail at the same time the first ply fails, initial failure is final failure, as in cases 1, 2, 3, 8, 
9, and 10. Some of the invited WWFE contributors developed degradation models or revised 
their models post test (Part B) to account for progressive failure. HyperSizer will include macro 
(ply level) and micro (fiber/matrix level) progressive failure in the near future. Shown in Section 
7.2.4 are preliminary HyperSizer micromechanics progressive failure predictions that illustrate 
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close comparison to test final failures. For now though, the emphasis is initial first ply failure. As 
a final point, the composite strengths are for pristine laminates, that is without damage. For an 
airframe design, damage tolerance and survivability allowables would be established and used as 
additional limiting strength requirements. 
 

4.1.2 Failure Envelopes 
A traditional way of visualizing the strength of a composite laminate is to generate a failure 
envelope that defines the combination of loadings that cause failure. Fig. 4.1 is a failure envelope 
of HyperSizer generated allowables. Uni-Directional (UD) material allowable strengths provided 
by the WWFE are “a given” and provided for uniaxial tension, uniaxial compression, or pure 
shear. As such, they serve as anchor points that all failure theory pass through, as depicted on the 
four axes of Fig. 4.1. Differences in failure theories will be observed for biaxial and shear 
loading interactions. The included failure envelopes are: Max Strain, Max Stress, Tsai-Hill, Tsai-
Wu, Tsai-Hahn, Hoffman, Hashin Matrix Cracking, Hashin Fiber Failure, LaRC03 Matrix 
Cracking, and LaRC03 Fiber Failure. Refer to Chapter 7 for detail on these failure criteria.  
 

 
 
As observed in Fig. 4.1, the test data for the loading interactions for this particular laminate only 
compares well with the Tsai-Hahn failure theory. Other test data may prove to match other 
failure theories better. The next section describes how to account for failure analysis inaccuracy 
and to more confidently predict laminate failure for different layups.  
 

Fig. 4.1, Failure envelopes generated by HyperSizer plotted with superimposed WWFE test data 
(blue circles) for the case 3 [±85°] layup from Table 4.1  
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4.2 The HyperSizer Correlation Factor (CF) Approach 
 
Each of the failure theories implemented in HyperSizer have been correlated to 130 tests. Before 
doing the correlation, a fundamental decision was made as to how to correlate.  

4.2.1 Choice of correlation: Individual ply properties vs. Failure 
criteria/material system 

 
The choice of correlating tests to the ply level or laminate level is as fundamental as the choice to 
perform composite stress analysis on the ply or laminate level. Though HyperSizer can perform 
the stress analysis on the laminate, ply, and fiber/matrix constituent levels, its primary composite 
strength predictions are performed on the ply level. Because of this, the choice of correlating 
analysis inaccuracies and test scatter to individual material ply properties at first seemed like the 
proper choice. In fact, Mil-Hdbk-17 characterizes the variability of ply data this way and 
publishes the mean, minimum, maximum, coefficient of variation, and either A or B basis design 
values, as described in section 7.2, and shown in Fig. 4.2. Establishing this type of statistical data 
for composite materials, where each distinct material property has experimentally measured 
uncertainty established, is likely due to the way metallic materials have historically been 
characterized in Mil-Hdbk-5.  
 

 
For isotropic metallic materials, this approach worked well when used with a dependable failure 
theory, such as von-Mises interaction. Unfortunately, the use of statistically defined allowables 
on each individual ply property type may not work as well for composites. First, they are at least 
twice as many unique properties used to characterize composites than metallics. So approaches 
like running Monte Carlo where each ply property as a data input that has its own probability 
density function (PDF) would likely get computational expensive. Second, with so many unique 
properties that are likely coupled in the physical behavior sense, there would be many more 

Fig. 4.2, Data sheet from Mil-Hdbk-17.   
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interactions to consider such that their individual uncertainties become less significant, and their 
combined uncertainty more of an impact. Third, there are many failure theories currently used 
and each one has its own analysis uncertainty. So it doesn’t really mean much for composites to 
use A or B basis statistical individual properties at the ply level, when where it matters is at the 
laminate level. Combined with so much variability of so many variables at the ply level, defining 
uncertainty of laminate strength based on individual ply property uncertainty was decided not 
appropriate. Instead, HyperSizer, composite laminate strength uncertainty is defined as a 
pair: failure theory & ply material system. In this way, HyperSizer includes the combined 
effect of the statistical variation of each distinct material property identified in Mil Hndbk 17 
such as Ft1, Ft2, Fc1, Fc2, Fsu, etc., and loading and layup variability.  

 
In contrast to composite strength, uncertainty in composite elastic response (stiffness) of the 
laminate does seem feasible to compute from the individual, statistically characterized ply 
modulus properties. This is because there are fewer variables and the relative accuracy of 
calculating laminate stiffness from ply data is well established and consistent using classical 
lamination theory (CLT).  
 
The next section describes the process for defining correlation factors.  
 

However, establishing each distinct ply level material property scatter is useful in 
quantifying an expected minimum amount of scatter to expect at the laminate level.  
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4.3 A simple introductory example: WWFE Case 1 with 19 test data 
 
The World Wide Failure Exercises (WWFE) case 1 of HyperSizer implementation of correlation 
factors is repeated here from Vol. 1, Ch 9.2.5.  

 

 
 
A typical failure envelope for a composite material has four quadrants representing the four 
possibilities of compression-tension biaxial loading, as illustrated in Fig. 4.1. As a way of 
introduction, however, we start with Case 1 of the WWFE that only shows two quadrants of the 
failure envelope - meaning no distinction between positive/negative shear. The calculated failure 
envelopes generated for that material system and loading is illustrated in Fig. 4.3, along with test 
data shown as blue circles.  

The discrepancy between the test data and the failure envelopes shows the analysis inaccuracies 
of many leading composite failure theories. We see that the Max Strain and Max Stress failure 
theories do not appear to be capturing the measured biaxial loading strength behavior. Both Tsai-
Hahn and LaRC03 appear to do quite well, particularly in the first quadrant of tension transverse 
stress combined with in-plane shear stress. LaRC03 failure theory seems to be tracking well an 

This is an example only. Refer to Vol 3, Chapter 4 for actual CFs defined based on 
all available test data.  

Fig. 4.3, HyperSizer generated failure envelopes for WWFE Case 1,  biaxial σy-τxy  of 0o E-glass/LY556 
lamina. 19 Test data shown as filled blue circles. These plots use unidirectional strengths based on test 
results. Units of (psi). 
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apparent linear relationship in the compressive/in-plane shear quadrant. However, by doing so, it 
appears to be overshooting failures that are best captured with Tsai-Hahn interaction criteria. 
However the one data point not being predicted by Tsai-Hahn is captured by LaRC03.  
 
While some criteria match test data better than others, all failure theories exhibit inaccuracies, as 
illustrated by their calculated failure envelopes. Even if there was a perfect criterion, there 
always exists natural scatter in observed strengths. Referring back to Vol 1, Fig. 5.1, as indicated 
with the blue filled circles, there exists large variations in test measured strengths for pristine 
laminates. All of the reported test cases of WWFE and those collected by the authors show a 
great amount of test data scatter in measured strengths. It is for this reason that the CF approach 
provides significant value to establishing consistent structural integrity and the means to move 
toward more efficient certification with analysis.  
 

4.3.1 Test data entered, and histograms and PDFs generated 
Fig. 4.4 and Fig. 4.5 show histograms for the 19 test values of WWFE Case 1. Three different 
failure theories are included: Tsai-Hahn, LaRC03, and Max Strain since it is the most frequently 
used in industry. Tsai-Hahn and LaRC03 show the 19 values in one histogram, where as for Max 
Strain, two histograms are shown: one for the condition where strain 2 (transverse to the fiber) 
controls and one for the condition where max strain 12 (in-plane shear) controls. For these 
combinations of stresses, a matrix cracking criteria controls for LaRC03 in all 19 tests.  
 

4.3.2 Failure theories compared for case 1 
The four histograms, displayed side-by-side, give a statistical indication of the relative accuracy 
of the different failure theories. In general we see that Tsai-Hahn and LaRC03 do considerably 
better than Max Strain. Also note that Tsai-Hahn does exceptionally well for Case 1, as it also 
did for the entire collection of test data as presented in Vol 3, Ch 3 & 4. Again, its histogram 
illustrates the ratio of failure load to failure prediction =1.012 which is very close to 1.0 and its 
standard deviation is small (1.012-0.933 = 0.079) meaning the test data is relatively tight without 
much scatter. Each dashed vertical bar, starting from left to right represents 3σ, 2σ, and 1σ 
standard deviations. In contrast to the accuracy of Tsai-Hahn, Max Strain is less accurate. For 
instance, Max Strain 12 shows a ratio of failure load to failure prediction =1.072 which is not 
that bad, however more importantly, its standard deviation is quite large (1.072-0.829 = 0.243). 
This will cause this failure theory’s theoretical prediction to be heavily knocked down to achieve 
equal reliability as other failure theories.  Finally, since the ratio of failure load to failure 
prediction, and standard deviation are slightly smaller for Tsai-Hahn, the histograms quantify 
what is observed in the graphical failure envelopes of Fig. 4.11, and that is it matches test data 
slightly better than LaRC03. 
 

4.3.3 Two step process for defining correlations factors 
After statistically quantifying analysis inaccuracy and scatter in measured tests, the next step is 
to establish proper CFs for a particular correlation category. The entire process is performed in 
two steps. The first step is to collect test data and make comparisons directly between theoretical 
and test data. In-fact, Figs. 4.4 and 4.5 are histograms of this first step. They are untouched 
theoretical failure predictions against experimentally measured failure loads.  
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The second step is to define the CFs and then rerun HyperSizer (using the new reliability 
analysis) for all the components that comprise the 19 test data points. The CFs are established by 
using the inaccuracy of the theoretical and standard deviation of the test scatter. Using max strain 
2 as an example, from Fig. 4.5 we see that T=P=0.9422. The horizontal axis (failure 
load/HyperSizer predicted) means that HyperSizer is theoretically over predicting failure. We 
need to knockdown the theoretical by 0.9422. This value is placed into the user input box for μ, 
Fig. 4.7. The CF η is entered into the user input box as well. η is calculated as: 
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Figs. 4.6 and 4.7 are histograms made after the second step. They show us how well HyperSizer 
is now predicting average failure. After running HyperSizer with the CFs for the 19 tests, the 
histograms of Figs. 4.6 and 4.7 should show P=1.0, or very close due to round off. A P=1.0 
means that we can now predict average failure load. Fig. 4.7 for Max Strain 2 now shows 
theoretical to be 1.061 higher than the calibrated predicted failure load (T=1.061=1/0.942). Vol 
1, Section 9.2.7 shows how HyperSizer makes use of the μ and η CFs. 
 
Since this is one material system, the material characterization and calibration of correlation 
factors is based on in-situ properties from the tests. One of the more important in-situ data is for 
the shear allowable, Fsu. These issues are covered in detail in this chapter. 
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Fig. 4.4, For WWFE Case 1, biaxial σy-τxy failure envelopes of 0o E-glass/LY556 lamina. Composite 
Failure Theories: Tsai-Hahn on the left, LaRC03 Matrix Cracking on the right.  

Fig. 4.5, For WWFE Case 1,  biaxial σy-τxy  failure envelopes. 
Max Strain Failure Theory: Max strain 2 direction on the left, Max strain 12 direction on the right. 
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Fig. 4.6, After applying correlation factors for WWFE Case 1, biaxial σy-τxy failure envelopes of 0o E-
glass/LY556 lamina. Tsai-Hahn on the left, LaRC03 Matrix Cracking on the right.  

Fig. 4.7, After applying correlation factors for WWFE Case 1, biaxial σy-τxy  failure envelopes. 
Max Strain Failure Theory: Max strain 2 direction on the left, Max strain 12 direction on the right. 
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4.4 Tsai-Hahn and LaRC03 best overall failure criteria for the 130 
tests 

For this composite material strength correlation, the Tsai Hahn and LaRC03 failure criteria are 
chosen to be used as they were deemed most accurate based on comparison to the WWFE and 
other test data.  For both criteria, 130 different tests were collected and made part of the 
correlation, many from the WWFE.  

4.4.1 Theoretical background Larc03 
 
LaRC03 and Hashin criterion are 
phenomenological based, in that 
they identify failure as being in the 
matrix or fiber, which lends itself 
well to progressive failure 
techniques. An interaction type  
failure like Tsai-Wu or Tsai-Hahn, 
seems not appropriate for 
progressive failure.  For this 
reason, LaRC03 may prove to be 
the better failure criteria for a 
typical laminate that will undergo 
progressive failure to achieve 
ultimate loading. LaRC03 has the 
unique ability to capture the 
response of an increasing  
compressive transverse stress 
which will increase the in-plane 
shear strength, almost in a straight 
line, Fig. 4.3, which is observed in 
some, but not all data. The 
LaRC03 failure criterion is too 
voluminous to be repeated here, but is documented in Vol 2, Ch 7. 

4.4.2 Theoretical background Tsai-Hahn 
 
To describe Tsai-Hahn, we first start with Tsai-Wu. The Tsai-Wu criterion [4.4], unlike 
directional criteria like max stress or max strain, is based on a single relationship for a biaxial 
stress field.  This criterion predicts failure when, 
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where Xt and Xc are the tensile and compressive strengths in the fiber direction, Yt and Yc are the 
tensile and compressive strengths in the transverse direction, and S is the in-plane shear strength.    
The interaction term, F12, that involves σ11 and σ22 cannot be determined via a uniaxial ply level 

Fig. 4.8, LaRC03 failure criteria distinguishes between six 
different possible physical failures, and so, unlike interaction 
criterion such as Tsai-Wu or Tsai-Hahn, is deemed more 
promising in the long term, especially for progressive failure. 
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test as can the other strengths and typically has relatively a minor effect on the criterion’s 
prediction, for most laminates. Therefore, F12 it is often set to zero, as is in done in HyperSizer.  
A modification to the Tsai-Wu theory was proposed by Tsai and Hahn [4.5], which estimates the 

12F  coefficient as, 

12
1

2 t c t c

F
X X Y Y

≈ −                                                                                         (4.4.2) 

The addition of equation (4.4.2) to equation (4.4.1) is referred to as the Tsai-Hahn criterion. 

4.4.3 Tsai-Hahn correlation to the 130 tests 
 
In Vol. 1, Chapter 8.2 we described the process for inputting test data and displaying it as a 
histogram using the Tsai-Hahn failure analysis. Here we continue discussion of that process by 
giving more detail into the source of the data and by showing the final histogram generated after 
running HyperSizer on all 130 applicable tests with the Tsai-Hahn specific CFs.  
 
Shown in Fig. 4.9 is a histogram generated by HyperSizer that plots the statistical distribution of 
the 130 test failures normalized by predicted failures. The histogram is used to determine the 
proper correlation factors (CFs) for a given correlation category: in this case “Composite 
Strength, Tsai-Hahn.” The height of the vertical bars indicates frequency of occurrence and to 
some degree a normal distribution. More importantly, the histogram illustrates the ratio of failure 
load to failure prediction is very close to 1.0 for the Tsai-Hahn failure theory. More importantly, 
the standard deviation is small meaning the data is relatively tight without much scatter. 
 
For the correlation category “Composite Strength, Tsai-Hahn” the correlation factors: η=0.10 
and μ1 = 0.9872 and μ2 = 0 have been established to best fit the data. From the histogram of Fig. 
4.8, the standard deviation, σ = 1.013 - 0.913 ≈ 0.10. If we were to establish a 99.865% 
reliability, K=3.00, and the resulting average strength allowable knockdown would equal 1.013(1 
- 3.0*0.10) = 0.709 (which due to round-off, is also equal to the left most vertical dashed line 
which represents the position on the PDF of 3σ. In summary, the theoretical is 1.013, the 
predicted is 1.000, and a 99.9 % reliability is ≈0.71.   
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Fig. 4.9, A HyperSizer Composite Strength, Tsai-Hahn histogram plot of 130 test data points. Top 
image before correlation. These are untouched, theoretical comparisons to tests. Tsai-Hahn theory 
matches test very well Bottom image after correlation factors applied.  
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4.4.4 LarC03 correlation to the 130 tests 
For the LaRC03 criteria there are two correlation categories: – fiber failure (49 tests) and matrix 
cracking (81 tests) for a total of 130 test data. To best fit test data, the “Composite Strength, 
LaRC03 Fiber Failure” has correlation factors: η=0.1107 and μ1 = 0.9388. “Composite Strength, 
LaRC03 Matrix Cracking” has CFs: η=0.157 and μ1 = 1.001.  These values and the resulting 
histograms are shown in Fig. 4.10 and 4.11. Even though the theoretical values for matrix 
cracking are nearly equal to average test values (which is good), the shortcoming is the relatively 
large scatter noted with η=0.157. This will cause the matrix cracking failure mode to be heavily 
penalized to reach the same reliability as the other failure criteria.  
 

 

 

 

Fig. 4.11, Composite Strength, LaRC03 Matrix Cracking after correlation.  

Fig. 4.10, Composite Strength, LaRC03 Fiber Failure after correlation.  
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4.5 Summary of each failure theory’s CFs 
 
Table 4.2 lists CFs for all composite laminate failure criteria. By inspection of the table, and each 
individual histogram of Vol 3, Ch 4, there are a few observations that can be made.  
 

• Tsai-Hahn failure theory best predicts failure of the 130 measured tests. It has the lowest 
η correlation factor and one of the closest μ1 to 1.0  

 
• Of the two physically based failure theories, LaRC03 did substantially better than Hashin. 

For LARC03, all results are within 2 sigma for fiber failure, and within 3 sigma for 
matrix failure 

 
• Max strain and Max stress did quite poorly. Hashin fiber failure and Max Strain 2 

direction did very poorly.  
 
 

Table 4.2, Summary of HyperSizer CFs for Composite Failure Theories  
Based on 130 Different Tests.  

(Note: The closer μ1 is to 1.0 the more accurate the theory. 
The lower η is, the more reliable the theory.) 

 
 

Failure Theory μ1 η 
Max Strain 1 0.9184 0.092 
Max Strain 2 0.9772 0.167 

Max Strain 12 1.104 0.210 

Max Stress 1 0.8922 0.1067 

Max Stress 2 0.9305 0.1427 
Max Stress 12 1.034 0.218 

Tsai-Hill 1.051 0.165 

Tsai-Wu  1.012 0.125 
Tsai-Hahn 1.013 0.099 

Hoffman 1.012 0.121 

Hashin Matrix Cracking  1.034 0.191 

Hashin Fiber Failure 0.9328 0.143 
LaRC03 Matrix Cracking  1.001 0.157 

LaRC03 Fiber Failure 0.9388 0.1107 

average 0.9893 0.1469
 
 
 
At first it is surprising to see the relative inaccuracy of the fiber strength prediction for Max 
strain, Max stress, Hashin, and LaRC03 is on average 10% over predicting measured strengths. 
However, part of the data included in the correlation category for fiber strength includes those 
loads that are not pure axial. For instance some loads that are primarily axial with a small 
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component of transverse or in-plane shear load could still cause this failure mode to be flagged 
as critical, and yet large enough to diminish its accuracy as pure axial criteria. 

4.6 In-situ effects of a ± θ layup of a specific material system  
This section describes case 10 and provides a detailed study of a specific Gr/Ep material system 
(AS4/3502) and its ± θ layup in-situ effects on correlation. In the previous sections, correlation 
factors were identified for the complete set of 130 test data that includes many different material 
systems. In this section we look in detail at in-situ material data properties and their effect on 
derived correlation factors of a specific material system, and resulting refinement to CFs.  

 

 
 
Fig. 4.12 plots the comparison of failure loads for a cross-ply laminate generated by max strain, 
max stress, Hashin’73, Hashin’80, Tsai-Hill, Tsai-Wu and LaRC03 failure criteria for AS4/3502 
as a function of ± θ layup. It shows that Tsai-Wu and Tsai-Hill match experimental data well for 
ply angles below 45o and that LaRC03 matches experimental data well for all angle degrees 
because it is using in-situ material properties. During the maturing stages of a design, as 
discussed in section 7.1, if the cost is acceptable based on criticality of a part and the volume of 
an end product, then the recommendation is to define specific CF’s for a material system, that 
includes a customer’s fabrication and processing (material and processing MP) in-situ effects.  
 
Fig. 4.12 is shown again as Fig. 4.13 with only LaRC03 failure theory that uses different in-situ 
Fsu allowables. In essence, the effects of off axis loading on a unidirectional tape material of 
single ply, or [±θ] laminate are correlated. Note, that the anchor points for failure criteria are the 
0, 90, and 45 ply orientations. So at these angles the material allowable strengths are “a given”, 

Fig. 4.12, Compressive strength of [+/-θ]s AS4/3502 predicted by different failure 
theories. For the 0, 90, and 45 angles, the criteria pass through the test data since these 
angles are test data given anchor points. At different angles the predictions vary. As an 
example of error, the orange horizontal lines indicate the large difference in test and 
prediction at 30° for max strain.  In this plot LaRC03 matches best. 
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hence a specific M&P starting point, and all failure criteria pass through these points as seen in 
both Fig. 4.12 and 4.13, except the LaRC03 that uses an analytical expression for the in-situ 
strength (green color).  

 

 
 
The ‘in-situ’ strength from experiment is 95.1 MPa. The reported ply strength in MIL-HDBK-17, 
is 102 MPa, and the ‘in-situ’ strength derived from the analytical relation is Sis = 114.8 MPa 
(GIc= 82 J/m2, GIIc = 120.5 J/m2). Material properties are listed in Table 4.3. The LaRC03 angle 
α0 was obtained by searching numerically for the angle that maximizes the failure criterion. See 
Section 7.7.1 for more detail.  
 
Fig. 4.13 purpose is to quantify how in-situ data provides more accurate failure prediction for a 
known material and a specific M&P. This poses the question of how specific M&P data can 
improve CF’s. In the next section we show the in-situ material data effects on derived correlation 
factors. However a broader perspective will be taken, in that more than just Fsu in-situ material 
data will be considered.   

4.7 How the effect of M&P can be captured with CFs 
If economically possible, statistically relevant tests of a material should be done that accounts for 
a full range of loading interactions/ply angles.  This section quantifies the possible inaccuracy in 
laminate load prediction when specific M&P testing is not performed. The comparison is based 
on using MIL-HBK-17 handbook data vs. characterized composite material properties that 
include specific vendor M&P effects. The important issue is how well we would have predicted 
failure a-priori with preexisting handbook data. Unfortunately, as shown below, the answer is 
quite poorly.  
 

Fig. 4.13, Compressive strength of [+/-θ]s AS4/3502 predicted by LaRC03 
using different values of in-situ strength. 27 test data points. 
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The test is a compressive load, Fig. 4.12, and as such, F1c is a relevant property to compare as 
well as Fsu. As documented in Table 4.3, Mil-Hdbk-17-2E data shows a values for F1c

 = 204 ksi / 
1406 MPa (mean) and 171 ksi / 1179 MPa (B-basis). The measured in-situ value of 1045 MPa 
should be nearly equal to the handbook typical value, but the Mil-Hdbk-17-2E typical value of 
1406 MPa is 40% higher. Such a variation in this strength property is not expected since it is 
based on fiber failure, a relatively easy and consistent data property to characterize. This is one 
suspected reason for the poor a-priori failure strength prediction.   
 
As seen in Table 4.3, the “B” basis properties are closer to the in-situ properties measured by 
NASA, and if performing a traditional analysis and sizing these properties would be used for 
achieving required safety. However, the close match between the in-situ and “B” basis properties 
should be considered a fluke and not to be expected. Typical material properties should be used 
for test prediction and for reliability sizing where the CF’s provide appropriate statistical values.  

4.7.1 AS4/3502 Properties 
 

Table 4.3, Properties of UD AS4/3502 from MIL-HBK-17 (75 oF) and NASA LaRC03 
report [4.2, 4.3]. Note big discrepancies in data. 

 

 MIL-HBK-17 
Typical 

MIL-HBK-17 
Design-“B” Basis 

LaRC03 report 
(Shuart) 

E1t/E1c (MPa) 133073 124106 127600 
E2t/ E2c (MPa) 9722 9308 11300 
G12 (MPa) 3744 -- 6000 
v12 0.30 0.30 0.278 
F1t (MPa) 1779 -- N/A 
F1c (MPa) 1406 1179 1045 
F2t (MPa) 53.5 -- N/A 
F2c (MPa) 238.6 183 244 
F6/F12/Fsu(MPa) 102.0 92.4 95.1 (in-situ) 
 
 
 
 
 
 
 
 
Fig. 4.14 and 4.15 illustrate via histograms the large difference between reliability and accuracy 
of failure prediction caused by variation in material properties. Fig. 4.14 represents substantial 
inaccuracy and Fig. 4.15 quality failure predictions with measured in-situ properties, with the 
largest error between test average and prediction being 3%. However, even when in-situ 
properties are used, a reliability analysis based on test correlation factors is necessary to account 
for test scatter as noted with some of the histogram bars being outside 2 standard deviations.  
 
 
 
 

Suggestion: Use all test data if a specific M&P is not known. Do this for PD to get more 
consistent reliability. Then once the specific material and process is known, then use that 
available test data to generate specific CFs and use for the remainder of the project design. 
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Fig. 4.14(a), AS4/3502, Mil-Hdbk-17-
2E  Tsai-Wu  

Fig. 4.14(b), AS4/3502, Mil-Hdbk-17-2E 
Tsai-Hahn  
 

Fig. 4.14(c),  AS4/3502,  Mil-Hdbk-17-2E 
 LaRC03 Fiber Failure 

Fig. 4.14(d),  AS4/3502 , Mil-Hdbk-17-2E 
 LaRC03 Matrix Cracking 

AS4/3502 using a-prior Mil-Hdbk-17-2E material properties. 
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Fig. 4.15(a),  AS4/3502 ,Fsu=95 MPa 
Tsia-Wu (η=.1012) 

Fig. 4.15(b),   AS4/3502 ,Fsu=95 MPa 
Tsia-Hahn (η=.11) 
 

Fig. 4.15(c),   AS4/3502 ,Fsu=95 MPa 
 LaRC03 Fiber Failure (η=.1152)

Fig. 4.15(d),   AS4/3502 ,Fsu=95 MPa 
 LaRC03 Matrix Cracking(η=.051) 

AS4/3502 using  in-situ test data material properties. 
Weighted Average of the LaRC03:Fiber Failure and  Matrix Cracking (μ1=.9795 = 1/1.021) (η=.0914) 
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4.7.2 IM7/8552 Properties 
 
Often it is difficult obtaining proper material properties. Described is a process frequently 
performed by the engineer in identifying material data for PD material screening trade studies. 
An ideal situation is to fund a characterization effort. However, a complete test program is 
usually not available early in design, and many preliminary designs are based on gathering 
required material properties from various sources. For instance, the analysis performed for the 
NASA stepped bonded joint used five different sources. As such, the need for a reliability 
approach which takes uncertainty into account is very much needed. From the table we see the 
large variation of material properties. All properties from MIL-HDBK-17 are assumed to be 
pristine, dry, ambient 72°F data. 
 
 

Table 4.4, Properties of UD IM7/8552 from MIL-HBK-17 (75 oF), NASA, Boeing/Collier, 
and industry consultant. Many sources are required to identify all necessary properties. 

 

Property NASA [4.6] MIL-17 (a) 
[4.7] 

MIL-17 (b) 
[4.7] 

Hoyt 
[4.8] 

Collier-Van 
West [4.9] 

E1t 23.35 23.5 - 20.7 20.8 
E2t 1.65 - 1.35  

(assume 
=E3t) 

1.65 1.43 

E1c - - - - 18.28 
E2c - - - - 1.56 
ν12 0.32 0.3111 - 0.34 0.31 
E3t 1.65 - 1.35 1.65 - 
G12 0.75 0.73 - 0.65 0.66 
F1t - 384 - - 338 
F2t 18.42 - - - 13.82 
F1c - - - - 224.83 
F2c - - - - 37.76 
F12 - 17.4 - - 15.8 
F3t - - 8.16 3 - 
F13 - - 14.8 5 - 
F23 - - 5.32 5 - 

 
 
The yellow and pink color properties are those included in the HyperSizer database for the 
NASA stepped bonded doubler validation problem. Pink properties are projected.  

• E1t varies by 12%  
o (comparing values between [4.6] and [4.8 & 4.9] for E1t, (23.35 – 20.8) / 20.8 = 

12%).  
• F2t varies by 33%  

o (comparing values between [4.6] and [4.9] for F2t, (18.4-13.8)/13.8 = 33%).  
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5 Correlation to Test: Cylindrical Panel Buckling 

5.1 Theory 
The phenomenon of panel buckling is highly dependent on panel cross sectional shape, bending 
moment of inertia, material stiffness, and relative span lengths. Additionally, if a panel is curved, 
the cylindrical geometry causes a beneficial stabilizing effect. However, in contrast with the 
stabilizing benefit are additional theoretical inaccuracies which must be accounted. All 
theoretical analysis methods over-predict critical buckling loads for unstiffened shells with 
curvature. Typically, the higher the radius/thickness ratio, the more substantial the over 
prediction.  Shells composed of composite layups complicate the problem further.   
 
These inaccuracies, which are well known to occur in both close form analytical methods as well 
as in high-powered, detailed FEA, have been traditionally handled by use of “knockdown 
factors.” Likely the most prominent publication on this topic used in industry is the NASA SP-
8007 report [5.1]. This report, written in the mid 1960’s, is primarily intended for unstiffened 
metallic sheet and sandwich panels. The research described herein has extended the concept of 
the knockdown factors to account for composite laminates and reliability. 
 
To derive correlation factors for curved panel buckling methods, 74 curved, composite buckling 
test articles from reference [5.3] were analyzed with HyperSizer and the results used to derive 
correlation factors. The use of the NASA SP8007 buckling knockdown factor was quantified and 
compared to results using a more consistently applied reliability approach. 
 
The HyperSizer buckling is based on Raleigh Ritz [5.3] and has proven to provide nearly the 
same theoretical values as does linear FEA (MSC/NASTRAN eigenvalue buckling) .  
 

5.2 Test Setup, Dimensions and Material Properties 
The 74 test panels are in the HyperSizer V&V database in the following location: 
Workspace:  CCCVal – Composite Curved Compression Panel Buckling RR3 Test Validation  
Components:  100-173;  Groups 100-173 
 
Dimensions [5.3, p.36];   
r= 12" 
L= 13" 
b= 9"  
tply=0.0064"  [derived] 
 
Material properties  [5.3, p.37]:   
E1 = 20 Msi 
E2 = 2.1 Msi     
ν12 = 0.21 
G12 = 0.85 Msi  
 
Boundary Conditions [5.3, p.56]   
loaded ends – fixed; straight 
unloaded edges – simple 

13"9"

R=12"

Simple Support
Fixed

Simple Support

Fixed
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5.3 Summary of Phase I Results 

5.3.1 Phase I Test Data Comparison 
Since the test data reported in the 1973 reference [5.3] used the SS8 legacy code for analysis 
predictions, its results are included in Tables 5.1 and 5.2. Table 5.1 summarizes the comparisons 
of the SS8 and HyperSizer Raleigh Ritz’s theoretical solutions to test results.  While this table 
summarizes results for only the SS8 legacy code and the HyperSizer Raleigh Ritz code, it is 
important to recognize that linear eigenvalue FEA solutions would be expected to achieve 
similar accuracy.  As such, the discussion of correlation factors presented here for HyperSizer 
solutions would be equally applicable to FEA.  This is illustrated in a verification example in 
Section 5.7.1.   
 

Table 5.1, Summary comparison of experimental load divided by  
the Phase I theoretical buckling load 

Analysis Code Average Standard 
deviation

Max Min 

SS8 legacy code 0.64 0.17 0.92 0.16 
HyperSizer Raleigh Ritz 0.71 0.13 0.97 0.38 

 
 
The accuracy of each theoretical tool is defined as the experimental failure load divided by the 
theoretical prediction. SS8, with an average of 0.64, over predicts the experimental value more 
than HyperSizer, which has an average of 0.71. The standard deviation of HyperSizer’s 
prediction accuracy is also smaller than SS8’s meaning there is less variation between prediction 
average and test average.  Finally, note the relatively wide variation in the extreme experimental 
vs. theoretical buckling load ratios indicated as Max and Min.  This indicates a wide variation in 
theoretical solution accuracy for different panel configurations. 
 
Table 5.2 provides detailed information for every test specimen. The 74 individual test articles 
were grouped into sets of 25 different unique laminates with each laminate’s measured thickness 
used in the analysis predictions.   The Snap, Moire, and Southwell columns represent different 
techniques to establish experimental buckling load. The first two SS8 and HyperSizer columns 
under “Failure Loads” represent the theoretical buckling loads, whereas the second set of 
columns under “knockdown” represent the ratio of experimental divided by theoretical. The last 
two columns with the headings γμ and η, are the average and standard deviation of the 
HyperSizer knockdown (test failure load / theoretical load) for each unique laminate.  In columns 
where there is no value for η listed, there was only one specimen of this unique laminate, and 
therefore no standard deviation was calculated. 
 
The knockdown for all 74 laminates is plotted as a histogram in Fig. 5.1.  Note that this 
histogram is relatively flat, i.e. it does not have a bell shape curve as might be expected from 
random test data.   
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Table 5.2, Detailed listing of experimental and theoretical buckling loads for HyperSizer and the SS8 
legacy code.  

Panel Laminate Thickness, 
Inches

Variation, 
Inches

Snap Moire Southwell Min. 
Experiment

SS8 HyperSizer SS8 HyperSizer Test 
Count

Test 
Average

γμ γη

17A [0/90]2s 0.0592 0.0021 6680 7323 6680 7200 7251.30 0.93 0.921
17B [0/90]2s 0.0528 0.0036 4865 4865 5900 5592.60 0.82 0.870 2.00 6421.95 0.90 0.22
19A [±45]2s 0.0696 0.0030 8660 8750 8660 12400 10746.00 0.70 0.806
19B [±45]2s 0.0707 0.0030 9000 9050 9000 12700 11106.00 0.71 0.810 2.00 10926.00
19C [±45]2s 0.0713 0.0025 8820 8820 13000 11304.00 0.68 0.780
19D [±45]2s 0.0719 0.0019 8760 8760 13200 11502.00 0.66 0.762
19E [±45]2s 0.0598 0.0026 5740 5740 9500 7902.00 0.60 0.726 5.00 10512.00 0.78 0.17
21A [0/90]s 0.0289 0.0015 985 1125 985 1530 1506.24 0.64 0.654
21B [0/90]s 0.0282 0.0013 925 925 1470 1429.74 0.63 0.647 2.00 1467.99 0.65 0.04
23A [±45]s 0.0354 0.0025 1870 1870 1914 1870 4000 3109.50 0.47 0.601
23B [±45]s 0.0362 0.0033 1610 1695 1610 4180 3218.40 0.39 0.500
23C [±45]s 0.0340 0.0018 1590 1624 1590 3780 2925.90 0.42 0.543
23D [±45]s 0.0359 0.0025 1850 1850 4130 3177.00 0.45 0.582
23E [±45]s 0.0307 0.0013 1280 1314 1280 2950 2519.10 0.43 0.508 5.00 2989.98 0.55 0.15
27  (Alum) 0.0630 17000 17000 23500 19512.00 0.72 0.871 1.00 19512.00 0.87
29C [±45] 3s 0.1045 0.0027 17760 23125 17760 27700 25875.00 0.64 0.686
29D [±45] 3s 0.1066 0.0037 21889 21889 29200 27018.00 0.75 0.810
29E [±45] 3s 0.0892 0.0040 10780 10780 19700 18405.00 0.55 0.586 3.00 23766.00 0.71 0.33
31A [+45]2s 0.0343 0.0024 1550 1550 1759 1550 2800 2799.00 0.55 0.554
31B [+45]2s 0.0356 0.0038 1505 1704 1505 2900 3034.80 0.52 0.496
31C [+45]2s 0.0353 0.0017 1520 1520 2900 2979.00 0.52 0.510
31D [+45]2s 0.0347 0.0021 1500 1500 2800 2870.10 0.54 0.523
31E [+45]2s 0.0289 0.0015 975 975 2000 1932.30 0.49 0.505 5.00 2723.04 0.52 0.17
33A [+45] 4s 0.0692 0.0031 7050 7050 11700 9867.60 0.60 0.714
33B [+45] 4s 0.0679 0.0024 6340 6300 7000 6300 11300 9529.20 0.56 0.661
33C [+45] 4s 0.0622 0.0030 5700 5750 5700 9300 8116.20 0.61 0.702
33D [+45] 4s 0.0709 0.0035 6620 6620 12200 10323.00 0.54 0.641
33E [+45] 4s 0.0591 0.0024 4000 4000 4021 4000 8300 7398.00 0.48 0.541 5.00 9046.80 0.66 0.20
35A [+45]6s 0.0902 0.0049 9180 10270 9180 20000 16182.00 0.46 0.567 1.00 16182.00 0.57
37A [-30]2s 0.0282 0.0071 725 715 715 2200 1872.00 0.33 0.382 1.00 1872.00 0.38
39A [-30]4s 0.0580 0.0022 4730 4730 8000 6144.30 0.59 0.770 1.00 6144.30 0.77
41A [-30]6s 0.0900 0.0018 10460 10435 10435 17800 14490.00 0.59 0.720 1.00 14490.00 0.72
43A [0]2s 0.0364 0.0020 1315 1575 1315 2100 2142.90 0.63 0.614
43C [0]2s 0.0368 0.0032 1540 1540 2100 2196.90 0.73 0.701
43D [0]2s 0.0362 0.0024 1315 1290 1418 1290 2100 2115.90 0.61 0.610
43E [0]2s 0.0294 0.0020 945 945 1800 1348.20 0.53 0.701 4.00 1950.97 0.65 0.19
45A [0]4s 0.0701 0.0018 5580 6468 5580 8700 8573.40 0.64 0.651
45B [0]4s 0.0699 0.0028 5735 5735 8700 8515.80 0.66 0.673
45C [0]4s 0.0696 0.0014 5300 5553 5300 8700 8430.30 0.61 0.629
45D [0]4s 0.0695 0.0014 5080 5610 5080 8700 8401.50 0.58 0.605
45E [0]4s 0.0582 0.0029 5105 5122 5105 5800 5605.20 0.88 0.911 5.00 7905.24 0.68 0.05
47A [0]6s 0.1064 0.0030 16500 18362 16500 21600 20385.00 0.76 0.809
47B [0]6s 0.1039 0.0027 18000 19598 18000 20600 19386.00 0.87 0.929
47C [0]6s 0.1013 0.0035 16760 17812 16760 19600 18387.00 0.86 0.912 3.00 19386.00 0.88 0.05
49A [0/90]3s 0.0880 0.0026 14680 16625 14680 16200 16101.00 0.91 0.912
49B [0/90]3s 0.0781 0.0034 12460 14118 12460 12500 12825.00 1.00 0.972 2.00 14463.00 0.94 0.12
51A [±30]s 0.0296 0.0019 1150 1150 2630 2083.50 0.44 0.552 1.00 2083.50 0.55
53A [±30]2s 0.0557 0.0023 5405 5818 5405 7750 7335.00 0.70 0.737 1.00 7335.00 0.74
55A [±30]3s 0.0807 0.0026 12900 13860 12900 17000 16281.00 0.76 0.792 1.00 16281.00 0.79
57A [0/-45/90/+45] s 0.0574 0.0018 8240 8966 8240 10000 9891.00 0.82 0.833
57B [0/-45/90/+45] s 0.0499 0.0028 6640 6691 6640 7500 7380.90 0.89 0.900
57C [0/-45/90/+45] s 0.0516 0.0023 6460 6897 6460 7900 7918.20 0.82 0.816
57D [0/-45/90/+45] s 0.0499 0.0028 5820 6416 5820 7500 7380.90 0.78 0.789
57E [0/-45/90/+45] s 0.0524 0.0032 6960 7194 6960 8250 8177.40 0.84 0.851 5.00 8149.68 0.84 0.13
59A [0/±60]s 0.0422 0.0010 3355 3595 3355 5200 5053.50 0.65 0.664
59B [0/±60]s 0.0392 0.0018 3390 3626 3390 4450 4322.70 0.76 0.784
59C [0/±60]s 0.0382 0.0026 3400 3582 3400 4200 4093.20 0.81 0.831
59D [0/±60]s 0.0397 0.0020 3000 3170 3000 4600 4439.70 0.65 0.676
59E [0/±60]s 0.0390 0.0028 3460 3846 3460 4420 4275.90 0.78 0.809 5.00 4437.00 0.75 0.06
61A [0/±60]2s 0.0870 0.0026 22950 23871 22950 27400 27423.00 0.84 0.837
61B [0/±60]2s 0.0794 0.0041 18080 18571 18080 22800 22383.00 0.79 0.808
61C [0/±60]2s 0.0785 0.0034 16920 18136 16920 22300 21825.00 0.76 0.775
61D [0/±60]2s 0.0782 0.0029 18800 19000 18800 22300 21645.00 0.84 0.869 4.00 23319.00 0.82 0.14
67  Alum 0.0320 3825 3645 3645 8500 5019.30 0.43 0.726 1.00 5019.30 0.73
69A [02/±45]s 0.0512 0.0026 5500 5663 5500 8150 7249.50 0.67 0.759
69B [02/±45]s 0.0521 0.0019 5410 5410 5114 5114 8150 7526.70 0.63 0.679
69C [02/±45]s 0.0488 0.0028 5385 5604 5385 7400 6541.20 0.73 0.823
69D [02/±45]s 0.0504 0.0025 5310 5581 5310 7900 7009.20 0.67 0.758
69E [02/±45]s 0.0506 0.0034 5870 5700 5882 5700 8000 7068.60 0.71 0.806 5.00 7079.04 0.76 0.04
71A [0/±45]s 0.0408 0.0021 2930 3187 2930 4870 4880.70 0.60 0.600

Failure Loads
Vertical Edges Simply Supported, Curved Edges Clamped

Knockdown HyperSizer
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5.3.2 Correlation Factors based on Two Parameters 
The uncorrelated histogram of Fig. 5.1 is flat because it does not take into account the affect of 
the individual panel designs on the theoretical accuracy.  Upon analyzing trends in the theoretical 
to test data comparison, two parameters appeared to have the most influence over this accuracy.  
These were the panel radius to thickness ratio and the relative magnitude of the off-diagonal D 
bending stiffness terms.  The dependence on r/t ratio is included by using the historical 
knockdown factor from NASA SP8007 [5.1] which is 
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Fig. 5.1, The ratio of experimental buckling load divided by theoretical (HyperSizer 
Raleigh-Ritz) buckling load as a histogram chart, where the vertical bars of the Y-axis 
represent the frequency of occurrence for the 74 buckling experiments. 
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Dx, Dy and Ex, Ey are the longitudinal and transverse bending stiffnesses and membrane 
stiffnesses respectively.   
 
The dependence on the off-diagonal bending stiffness terms is also included by, 
  

2211

2313

DD
DD

Dratio +
+

=γ      (5.3.3) 

 
Fig. 5.2 Highlights the relationship between these two parameters and the overall knockdown 
factor.  As shown, the knockdown is a function of both the NASA SP8007 knockdown and the 
off-diagonal D terms.  As such, the overall knockdown factor was determined by performing a 
linear regression of the test data, fitting the overall knockdown factor to equation 5.3.4.  The 
resulting coefficients for this equation are shown in Table 5.3.   
 

( )γγγγγ μμμμ NASA
DD
DD

3
2211

2313
21 +

+
+

+=    (5.3.4) 

 
 

Table 5.3,  Coefficients of Eq. 5.1.4 resulting from a linear regression  
of the test data to theoretical value comparison. 

η 1μγ  2μγ  3μγ  

0.12 0.4411 -0.2615 0.7723 
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Fig. 5.2,   Linear regression of the analysis correlation factor, γμ ,  for two parameters. 



 

53 

 
 
The summary results using these correlation factors is shown in Table 5.4 and Fig. 5.3.  Note that 
the original 74 test laminates have an undue influence toward non-typical layup stackings. It 
appears the test program of [5.3] emphasized extreme bounds of possible layups. Before 
performing regression analysis and establishing general use correlation factors, the more 
commonly used layup orientations (e.g. [0/-45/45/90]) were duplicated, and several non-standard 
layups were removed (such as the non-balanced [-30]2s,).  These duplicated layups are indicated 
in Table 5.4 as the number of “repeats”. This brings the total number of data points from 74 to 94 
and the resulting average knockdown factor is 0.747.   

Comparison of Analysis Corrleation Factors γμ
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Fig. 5.3, Bar chart comparing γμ values from Table 5.4.  The blue bars represent the ratio of 
HyperSizer predicted buckling load over theoretical, where γμ is computed with Equation 
(5.3.4). The dark red bars represent the ratio of average test buckling load over theoretical.  
These are test values that are found in the γμ column of Table 5.2.

Correlation Factors, γμ for Test vs. HyperSizer 
Predicted Values

Table 5.4, Rolled up summary of test specimen groups, correlation factors, and NASA 
knockdown factors. 

Specimen 
Number

Test 
Count

Repeats Laminate (D13+D23)/ 
(D11+D22)

γη     
test data

γμ       
test data

γμ 
predicted

NASA 
Knockdown 

Factor
19 5 1 [±45]2s 0.255 0.17 0.78 0.755 0.493
23 5 1 [±45]s 0.509 0.15 0.55 0.601 0.38
29 3 1 [±45] 3s 0.17 0.33 0.71 0.824 0.553
31 5 1 [+45]2s 0.679 0.17 0.52 0.554 0.376
33 5 1 [+45] 4s 0.679 0.20 0.66 0.639 0.486
43 4 1 [0]2s 0 0.19 0.65 0.735 0.38
45 5 1 [0]4s 0 0.05 0.68 0.820 0.49
47 3 1 [0]6s 0 0.05 0.88 0.873 0.559
57 5 6 [0/-45/90/+45] s 0.13 0.13 0.84 0.752 0.447
59 5 2 [0/±60]s 0.086 0.06 0.75 0.729 0.402
61 4 2 [0/±60]2s 0.057 0.14 0.82 0.829 0.522
69 5 2 [02/±45]s 0.04 0.04 0.76 0.767 0.436
71 5 1 [0/±45]s 0.102 0.09 0.58 0.725 0.402

Weighted Average 0.747 0.747

Predicted 
Theoretical 

Avg Test 
Theoretical 
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The reliability knockdown factor, η, is determined from the standard deviation of the 
experimental failure divided by predicted failure.  In this case, the final value was η = 0.12.  
These values for γμ and η lead to the final histogram shown in Fig. 5.4.   
 

 
 

Mean

γη 
μγ⋅=

⎟
⎠
⎞

⎜
⎝
⎛=

lTheoreticaPredicted

Predicted
ExperimentMean Avg

σ 2σ 3σ 

Fig. 5.4 Final histogram that includes the NASA SP8007 knockdown and the (D13+D23) 
/ (D11+D22) bending stiffness ratio with duplicated more commonly used layups. Note 
how, compared to Fig. 5.1, this histogram more closely resembles a normal distribution 
with a definitive peak and less variance. It was generated using equation (5.3.4), the 
regression terms from Table 5.3, and an η value of 0.12. 

η 

η 2η 3η 
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5.4 Phase II Updated Correlation Factors 
Since the completion of Phase I, the implementation of Raleigh Ritz within HyperSizer has been 
improved which changed several of the layup results presented in phase I.  The changed results 
are summarized in Table 5.5.  In addition to the changed results, several additional layup families 
were added to the regression that were intentionally omitted from the Phase I data.   
 
Table 5.5, Summary of changed buckling results for Phase II correlation factor calculation.  

Compare HyperSizer results (purple) to those shown in Table 5.2.   

Panel Laminate Min. 
Experiment

Min Exp.Unit Min Exp. MS Average 
Experiment

HyperSizer Test 
Count

Phase II 
γμ

Phase I 
γμ

19A [±45]2s 8660 962.22 8.6222 8705.00 10278.00
19B [±45]2s 9000 1000.00 9.0000 9025.00 10620.00
19C [±45]2s 8820 980.00 8.8000 8820.00 10809.00
19D [±45]2s 8760 973.33 8.7333 8760.00 11007.00
19E [±45]2s 5740 637.78 5.3778 5740.00 7446.60 5.00 0.82 0.78
23A [±45]s 1870 207.78 1.0778 1884.67 2290.50
23B [±45]s 1610 178.89 0.7889 1652.50 2397.60
23C [±45]s 1590 176.67 0.7667 1607.00 2108.70
23D [±45]s 1850 205.56 1.0556 1850.00 2357.10
23E [±45]s 1280 142.22 0.4222 1297.00 1709.19 5.00 0.75 0.55
33A [+45] 4s 7050 783.33 6.8333 7050.00 8146.80
33B [+45] 4s 6300 700.00 6.0000 6546.67 7824.60
33C [+45] 4s 5700 633.33 5.3333 5725.00 6500.70
33D [+45] 4s 6620 735.56 6.3556 6620.00 8581.50
33E [+45] 4s 4000 444.44 3.4444 4007.00 5839.20 5.00 0.80 0.66

Failure Loads
Vertical Edges Simply Supported, Curved Edges Clamped

 
 
Once again, using the test data to theoretical value comparison, correlation factors were derived 
by linear regression using Equation (5.3.4).  The resulting CFs are shown in Table 5.6. 

 
Table 5.6, Coefficients of Equation 5.3.4 resulting from a linear regression of the Phase II 

test data to theoretical value comparison. 
η 1μγ  2μγ  3μγ  

0.136 0.3956 -0.1144 0.8751 
 
 γ μ vs NASA γ
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Fig 5.5, Using the test-to-theoretical regression for Phase II, the overall knockdown factor 
is now less reliant on the off-diagonal D ratio and more reliant on the NASA SP-8007 
knockdown.  This is also seen by the fact that the magnitude of γμ2 is lower and γμ3 is 
higher for Phase II than it was in Phase I. 
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The summary results with the improved Raleigh-Ritz analysis are shown in Table 5.7 and Fig. 
5.6.  The average knockdown for this data is 0.768 compared to the prior 0.747.  This means that 
on average, the theoretical prediction is closer to the experimental data than in Phase I.   
 

Comparison of Analysis Correlation Factors γμ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

[0
/9

0]
2s

[±
45

]2
s

[0
/9

0]
s

[±
45

]s

(A
lu

m
)

[±
45

] 3
s

[+
45

]2
s

[+
45

] 4
s

[0
]2

s

[0
]4

s

[0
]6

s

[0
/9

0]
3s

[±
30

]s

[±
30

]2
s

[±
30

]3
s

[0
/-4

5/
90

/+
45

] s

[0
/-4

5/
90

/+
45

] s

[0
/-4

5/
90

/+
45

] s

[0
/-4

5/
90

/+
45

] s

[0
/-4

5/
90

/+
45

] s

[0
/-4

5/
90

/+
45

] s

[0
/±

60
]s

[0
/±

60
]s

[0
/±

60
]2

s

[0
/±

60
]2

s

(A
lu

m
)

[0
2/

±4
5]

s

[0
2/

±4
5]

s

[0
/±

45
]s

Laminate

A
na

ly
si

s 
co

rr
el

at
io

n 
fa

ct
or Predicted

Test Data

Correlation Factors, γμ, for Test vs. HyperSizer Predicted Values 

Fig. 5.6, Rolled up summary bar chart itemized by test specimen groups comparing γμ from Table 5.7. 
Many different layup combinations tested. The blue bars represent the ratio of HyperSizer predicted 
buckling load over theoretical, where γμ is computed with Equation (5.3.4). The dark red bars represent 
the ratio of average test buckling load over theoretical.  These are test values that are found in the γμ 
column of Tables 5.2 and 5.5. Included with the newly defined CF data are the calculated NASA 
knockdown factors and their resulting reliabilities. The average of these 109 individually backed out 
reliabilities is 99.04%, which gives independent verification to NASA’s larger collection of test data and 
the intended buckling knockdown safety of 99%. 

Table 5.7, Rolled up summary of test specimen groups, correlation factors, 
and NASA knockdown factors.

Predicted 
Theoretical 

Avg Test 
Theoretical 

Specimen 
Number

Test 
Count

Repeats Laminate (D13+D23)/ 
(D11+D22)

η       
test data

γ μ       
test data

γ μ 
computed

Computed 
99% 

Reliability

NASA 
Knockdown 

Factor

Computed 
Reliability for 

NASA 
Knockdown

17 2 1 [0/90]2s 0.000 0.22 0.90 0.795 0.478 0.456 99.36
19 5 1 [±45]2s 0.255 0.17 0.82 0.798 0.481 0.493 98.75
21 2 1 [0/90]s 0.000 0.04 0.65 0.685 0.369 0.331 99.54
23 5 1 [±45]s 0.509 0.15 0.75 0.670 0.354 0.380 98.35
27 1 1 (Alum) 0.000 - 0.87 0.816 0.499 0.480 99.32
29 3 1 [±45] 3s 0.170 0.33 0.71 0.860 0.544 0.553 98.80
31 5 1 [+45]2s 0.679 0.17 0.52 0.647 0.331 0.376 97.68
33 5 1 [+45] 4s 0.679 0.20 0.80 0.743 0.427 0.486 97.07
43 4 1 [0]2s 0.000 0.19 0.65 0.728 0.412 0.380 99.48
45 5 1 [0]4s 0.000 0.05 0.68 0.824 0.508 0.490 99.30
47 3 1 [0]6s 0.000 0.05 0.88 0.885 0.568 0.559 99.17
49 2 1 [0/90]3s 0.000 0.12 0.94 0.852 0.536 0.522 99.24
51 1 1 [±30]s 0.377 - 0.67 0.663 0.347 0.355 98.83
53 1 1 [±30]2s 0.189 - 0.74 0.776 0.459 0.459 99.01
55 1 1 [±30]3s 0.126 - 0.79 0.836 0.520 0.520 99.00
57 5 6 [0/-45/90/+45] s 0.130 0.13 0.84 0.772 0.456 0.447 99.16
59 5 2 [0/±60]s 0.086 0.06 0.75 0.738 0.421 0.402 99.32
61 4 2 [0/±60]2s 0.057 0.14 0.82 0.846 0.530 0.522 99.14
67 1 1 (Alum) 0.000 - 0.73 0.718 0.401 0.368 99.49
69 5 2 [02/±45]s 0.040 0.04 0.76 0.773 0.456 0.436 99.33
71 5 1 [0/±45]s 0.102 0.09 0.58 0.736 0.419 0.402 99.29

Weighted Average* 0.768 0.768 0.452 0.447 99.09
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5.5 Independent Verification of NASA SP-8007 Reliability 
In Table 5.7, not only are the values of γμ shown for each laminate stacking, but also the 
computed knockdown for a 99% reliability.  Comparing this value to the NASA SP8007 
knockdown factor, we can back out a reliability for the NASA knockdown.   This is done by 
calculating the 'K' value of the NASA knockdown factor and calculating a reliability from that K 
value.  For example, for Specimen Number 55, 
 

        33.2
136.0

52.0836.0
=

−
=

−
=

η
γγ μ NASA

K    

 
This K value of 2.33 corresponds to a reliability of 99% as shown in the right most column of 
Table 5.7.  The relationship between K and reliability is found in the K vs. reliability table in the 
beginning of Volume 3. 
 
The weighted averages of the each item is summarized at the bottom of each column in Table 
5.7, these are calculated by: 
 

( )( )[ ]
( )( )[ ]∑

∑=
RepeatsCountTest

ValueRepeatsCountTest
AverageWeighted

)(   (5.5.1) 

 
This value for the right-most column is the average reliability of the SP-8007 knockdown factors 
applied to the 109 individual test results, which is 99.09%. This gives a sanity check that the 
newly developed correlation factor capability is operating as intended.  This second source of 
test data also provides independent verification against NASA’s larger, original collection of test 
data where the intended buckling knockdown reliability target was 99%. A third source of test 
data provides yet another independent verification against NASA’s larger, original collection of 
test data. Section 5.7.1 shows that for 32 steel beer cans tested for cylindrical buckling by 
Arbocz [5.4], the backed out NASA knockdown factor reliability ~99.2%. 
 
 
 At first glance it might appear that the correlations described in this document are 

merely a re-hashing of the work done in SP-8007 and therefore not really needed.  
However, in the present work we are taking the NASA original test data into 
account (by including the NASA γ knockdown factor), adding dependence on the 
off-diagonal D13 and D23 terms, accounting for partial cylinders (width to radius 
ratios), and adding 74 composite test panels to the correlations.  By doing this, we 
believe that the γμ correlations give slightly more accurate results, especially for 
composites. In addition, by using two separate knockdown factors, γμ and η, 
desired reliability can be specified by the user instead of being locked in, as with 
the SP-8007 knockdown factor.
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5.6 HyperSizer CFs and Generated Histogram 
In the correlation category “Panel Buckling, Curved” the correlation factors: η=0.136 and μ1 = 
0.3956, μ2 = -0.1144, and μ3 = 0.8751 have been established to best fit the test data for the 109 
data points. As shown in Fig. 5.7 the difference between the average failure load and average 
predicted allowable load is quite small (P=0.9847 failure load/HyperSizer predicted). Note that 
the average theoretical failure load is 1.287/0.985 = 131% of the predicted failure load. 
 

 
 
From Fig. 5.7 note the normalized standard deviation value, η = 0.985 – 0.849 = 0.136.  If we 
were to establish a 99.865% reliability, K would be 3.0, and the resulting buckling allowable 
would equal 0.9847 - 3.0*0.136 = 0.577.  So in summary, theoretical is 1.287, predicted is 0.985, 
and a 99.9 % reliability is 0.577, meaning that on average, the theoretically derived failure load 
is 1.287/0.577 = 223% of the design allowable.  Said in another way, the knockdown is 
0.577/1.287 = 0.4483.  
 
 

Fig. 5.7, Panel Buckling, Curved, Simple, Fixed, or Free BC, Biaxial stiffness panel 
correlation category.
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5.7 Example: Application of γμ and η to buckling of [02/±45]s curved 
laminates   

In this example the correlation factors derived from the 74 composite curved shell test articles 
are applied to only five of the curved test laminates, all with the layup, [02/±45]s. We start the 
example by showing the math for just the 1st laminate of the five, noted as 69A (see Table 5.2). 
The remaining four laminates of the set are summarized in tables.  
 
Dimensions : 
R= 12",  L= 13", b= 9"   
t = 0.0512", r/t ratio = 12/0.0512 = 234.4 
tply = 0.0064" 
 
Material properties:   
E1=20 Msi,   E2=2.1 Msi,   ν12=0.21,  
G12=0.85 Msi 
 
Boundary conditions:    
loaded ends fixed,  
straight unloaded edges simple  
 
Step 1: Calculate the laminate stiffness terms 
 
Using classical lamination theory, the relevant terms are: 
A11 = 683,911   Ex = A11  
A22 = 223,539   Ey = A22  
D11 = 205.9   Dx = D11 
D12 = 11.22   Dy = D22 
D22 = 29.91   Dy = D22 
D13 = -4.71 
D23 = -4.71    
D33 = 15.77    
 
Step 2:  Calculate the NASA buckling knockdown factor, NASA γ, using eqns (5.3.1) and 

(5.3.2), repeated here, 
 

977.0
8.29

1

2
1

4

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

yExE
yDxD

rφ     (5.3.2b) 

 
438.0)1(901.01 =−−= −φγ eNASA     (5.3.1) 

 
 

13"9"

R=12"

Simple Support
Fixed

Simple Support

Fixed

04.0
2211

2313 =
+
+

DD
DD



 

60 

Step 3: Calculate the curved-cylindrical buckling analysis correlation factor, γμ, using eqn. 
(5.3.4), repeated here, and correlation factors from Table 5.6, 

 

( )γγγγγ μμμμ NASA
DD
DD

CCK 2
2211

2313
1 +

+
+

+=    (5.3.4) 

 
 

( ) 7743.0438.08751.0)04.0(1144.03956.0 =+−=μγ      
 
 
Step 4: Calculate the theoretical buckling load (Nx,theoretical) 
 
The HyperSizer Raleigh Ritz solution is used to compute the 
theoretical buckling load, see figure to the right. For the given 
dimensions, boundary conditions, radius of curvature and 
unsymmetric Bij stiffness terms if they exist:  
 

)/(4.805, inlbN ltheoreticax =  
 
Step 5: Calculate the predicted buckling load (Nx,pred) 

 
( )( ) ( )( ) )/(7.6237743.04.805,, inlbNN theoxpredx === μγ  

 
Step 6: Compare the predicted buckling load to the experimental buckling failure load 

(Nx,experimental) 
 
From Table 5.2, we find that the experimental buckling failure load for Specimen 69A is 5500 
lb.  For the 9" wide panel this gives a unit load of Nx,experimental = 611.1 lb/in. The ratio of 
experimental buckling load / predicted buckling load = 611.1/623.7 = 0.980.  The following 
summary table for all five [02/±45]s curved laminates shows HyperSizer predicted (mean) 
buckling load compared to the test failure load. No safety or reliability is included in this table. 
 

Table 5.8, HyperSizer theoretical, predicted and actual failure loads for 5 test articles. 
Experimental 
Test Group 

r/t 
ratio 

NASA γ 
knockdown γμ 

HyperSizer 
Theoretical 

(lb/in) 

HyperSizer 
Predicted 

(lb/in) 

Experimental 
Failure 

Load (lb/in) 

Ratio: 
Experimental 
/ Predicted 

69A 234 0.438 0.774 805.4 623.7 611.1 0.980 
69B 230 0.441 0.777 836.3 649.7 568.2 0.875 
69C 246 0.430 0.767 726.8 557.8 598.3 1.073 
69D 238 0.436 0.772 778.8 601.3 590.0 0.981 
69E 237 0.436 0.773 785.3 606.9 633.3 1.044 
Average  0.436 0.773 786.6 607.9 600.2 0.9906 

 
Note that as expected and desired, some of the predicted buckling loads are higher and some are 
lower than the experiment failure load, but not by much. At this point we are fairly accurately 
computing the average buckling failure load.  The next step is to apply a reliability. 
 
Step 7: Compute the allowable buckling load (Pc,allow) 

HyperSizer Raleigh Ritz 
Buckling = 805.4 (lb/in) 
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In order to find the reliability based allowable, we must first determine the relative accuracy of 
the predicted solution, which is expressed as: 
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alExperiment
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AverageP     (5.7.1) 

 
The allowable buckling load is then determined based on the desired level of reliability.   The 
equation for determining the reliability allowable is: 
 

( )( )( )ηγ μ KPNN ltheoreticaxallowablex −= ,,     (5.7.2) 
 
The value of η is determined by taking the standard deviation of the five test data values for 
Group 69, normalized by the predicted values. 
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The value of K is determined by the desired reliability.  For this example, we will consider 84% 
reliability or about 1 in 6 probability of failure.  As shown in the K vs. Reliability Table at the 
beginning of Volume 3, for 84% reliability, K = 1.0, therefore the allowable load is:    
 
 

( )( ) ( )
( ) )%84()/(570)0762(.0.19906.0)774.0)(4.805(

,,

yreliabilitinlb
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=−=

−= ηγ μ  

 
For this set of test data, we expect 84% (or 5 out of 6) of the panels to fail at or above 570 lb/in.  
Indeed as seen in Table 5.8, out of these five tests, only Panel 69B (Failure Load = 568 lb/in) 
failed below this allowable of 570 lb/in.  Increasing the reliability to 90% (1 in 10 chance of 
failure) gives an allowable load of 558.6 lb/in.  In this case none of the 5 panels in our samples 
would be expected to fail and indeed none of them do. 
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5.7.1 Cylindrical Buckling of Beer Cans 
The HyperSizer Raleigh-Ritz buckling analysis and the correlation factor analysis methods were 
recently applied to 32 steel beer cans that were tested for cylindrical buckling by Arbocz [5.4].  
The beer cans were stainless steel and tested in a special purpose testing machine at the 
University of Delft in 1987 [5.5]. Professor Arbocz of presented results from this set of 32 can 
crush tests at the AIAA SDM 2001 conference.   
 

5.7.1.1 Theoretical Failure Loads 
The theoretical and allowable buckling loads for these cans, as calculated with three different 
analysis methods, are presented in Table 5.10.  The three independent analyses, using 
substantially different methods, all compute nearly the same theoretical buckling loads and 
therefore the HyperSizer correlation factors presented herein are equally applicable to any 
of these methods. 
 
 
STAGS  Theory = 1778 lbs. 
The first, and most advanced of the three methods is the STAGS non-linear FEA program, 
which was applied to this problem by Professor Arbocz [5.4].  In the STAGS analysis, 
imperfections and non-linear collapse behavior was studied in detail.    
 
 
HyperSizer Theory = 1764 lbs. 
HyperSizer Raleigh Ritz solutions were performed for two different boundary conditions as 
shown in Fig. 5.8, with little difference in allowable buckling load predicted between them.  
 
 

 
 
NASA closed form theory = 1763 lbs. 
The NASA SP-8007 [5.1] closed form solutions were performed as follows.  The equations 
shown are for buckling of thin-walled circular cylinders and are to be used in conjunction with 
empirical knockdown factors.   The critical buckling stress, σx,cr, is calculated from, 

Fig. 5.8, HyperSizer Raleigh Ritz buckling solutions for the beer can under compression.  
The average value of 1764 (lb) is used.  

Simple Boundary Conditions 
(Theoretical Buckling Load = 1745 lb)

Fixed Boundary Conditions 
(Theoretical Buckling Load = 1782 lb) 
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where E is the elastic modulus, t is the wall thickness, ν is poisons ratio, and r is the radius. For 
the special case where ν = 0.3, 

r
tEcrx 6.0, =σ        (5.7.5) 

 
Table 5.9, Beer Can Data 

Variable Metric Units English Units 
r 33 mm 1.2992 in 
t 0.1 mm 0.003937 in 
E 2.08x105  N/mm2 30.17x106  psi 
ν 0.3 0.3 

 
Using the data in Table 5.9, with Equation (5.7.5), 

( )( )( ) lbsrtPksi
t
r

crxcrcrx 17632,90.54
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,, ===

=

πσσ
 

 
Boundary Conditions 
The STAGs FEA solution is based on fixed BCs. The average of fixed and simple BCs are used 
for the HyperSizer theoretical solution. The BCs for which the NASA solution is based are not 
specified in NASA SP-8007 report [5.1]. 

5.7.1.2 Computed Buckling Knockdown Factors and Allowable Loads 
 
STAGS 
The knockdown used by STAGs was not based on statistical data, but rather is a purely 
computed value based on the effect of imperfections. The knockdown is 0.44, giving an 
allowable load of (.44)(1778)=782 (lb). See Arbocz [5.4].  
 
NASA SP-8007 
The NASA buckling knockdown is intended to provide a constant 99% reliability. The empirical 
buckling knockdown factor, γ , is given by  

)1(901.01 φγ −−−= e  1500,
16
1

≤=
t
rfor

t
rφ    (5.7.6) 

 
Using the data in Table 5.9, with equation (5.7.6), 

( )( ) lbsP
t
r

allowable 6853885.017633885.01353.1,330 ===== γφ  
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HyperSizer 
 
Because the NASA knockdown is based on 99% reliability, we will set our HyperSizer 
knockdown also to a 99% reliability (K=2.33).  
 

( )ηγγ μ 33.2−= ratioallowable P      (5.7.7) 
      

The HyperSizer equivalent knockdown is computed two ways. The first way is by using the 
generally defined CFs (η=0.136 and μ1 = 0.3956, μ2 = -0.1144, and μ3 = 0.8751; see section 5.5)  
from a larger collection of other test data, and does not include these 32 data points.  
 
From above, the NASA knockdown is computed to be γ = 0.3885. Therefore the HyperSizer 
effective knockdown, γμ, is  
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where b=(πr/2)=2.04 is ¼ of the cylinder circumference. The combined effect of the three μi 
terms is γμ  = 0.6130. Using equation (5.7.7).  
  
 

( ) 4094.0)136(.33.29847.06130.0 =−=allowableγ  
 

( ) lbPallowable 7224094.01764 ==  
 
The second way is by using specifically defined CFs (η=0.10 and γμ = 0.5119)  based solely on 
these 32 data points and is included to show the statistics ‘in-fact.’  This is accomplished by 
performing statistics just on the 32 test data points, as summarized in Table 5.11.  
 

η   = 0.1 
γμ  = (average test) / (theoretical) = 903 / 1764 = 0.5119 
 

using equation (5.7.7)  
 

( ) 3926.0)1(.33.215119.0 =−=allowableγ  
 

( ) lbPallowable 6933926.01764 ==  
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5.7.1.3 Prediction Summary 
 

Table 5.10,  Beer Can Failure Allowables (crushing load) 
Method Theoretical 

buckling load (lbs) 
Knockdown 

factor 
Allowable 

buckling load (lbs) 
    
STAGS [5.4] 
   non linear FEA  

1778 0.44 3 782 

HyperSizer Raleigh Ritz  
      CFs based on other data1  

1764 0.409 4 722 

HyperSizer Raleigh Ritz  
     CFs based only on this data2 

1764 0.3926 4 693 

NASA SP-8007 
   closed form solutions 

1763 0.3885 5 685 

1  The HyperSizer correlation factors are defined statistically for 109 other test data, and does not include these 32 
cans. Intended for general use on any curved buckling analysis.   
2  The HyperSizer correlation factors are defined statistically for just these 32 cans. Specific to these tests. 
3  computed to account for panel imperfections [5.4] 
4  HyperSizer computed knockdown (for 99% reliability).  
5  empirical NASA SP-8007 knockdown (for 99% reliability).  
 
Referring to Table 5.10, the NASA SP-8007 buckling knockdown is defined a-priori and not adjusted to 
include these 32 data points. Similarly, the HyperSizer computed knockdown (0.409 ) is also defined a-
priori and not adjusted to include this these 32 data points. Therefore these 32 tests points represent a true 
verification for both. However, the second HyperSizer computed knockdown (0.3926 ) is based solely on 
these 32 data points and is included to show the statistics ‘in-fact.’  The Probability Density Function 
(PDF) of the beer can test data using the test average and standard deviation is plotted in Fig. 5.9. 
 

 

0 500 1000 1500 2000

Failure Load (lb)

De
ns

ity

PDF
SP-8007 Theoretical
Test Average
Test Minimum
SP-8007 Allowable
99.865% Reliability

1763632 685 903685

Fig. 5.9, PDF for 32 beer can buckling test articles.  The NASA SP-8007 theoretical buckling load is 
shown as the vertical red line.  The other plotted vertical lines are the test average (903) and minimum 
(685), and the SP-8007 buckling allowable load.  
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5.7.1.4 Test Data Failure Loads 
 
Table 5.11 shows the complete listing of the experimentally 
measured beer can buckling loads. Table 5.12 shows the 
resulting statistical values from the data. Fig. 5.10 is a 
histogram of the 32 failure loads. Note the minimum value 
(685 lb) is more than 10% lower than the next lowest failure 
load, and in some cases might be considered to be an outliner.  
In the present analysis, however, this point was not 
considered and outliner and was included in all calculations. 
 
The average failure load (statistical mean) of the 32 tests was 
4.017 kN (903 lbs). Using a 3σ limit on the test data, that is 
three standard deviations from the mean to the lower left end 
of the bell curve, would put the load limit at 4.017 – 3*0.402 
= 2.811 kn (632 lbs). The 3σ limit represents 99.865% 
confidence in the load carrying capability of a can. 
 

Table 5.12,  Beer Can Test Summary Failure Results 
 Metric Units 

(kN) 
English Units

(lbs) 
Average (mean) 4.02 903 
Min 3.05 685 
Max 4.68 1052 
σ 0.402 90.4 
η (= σ / μ) 0.1 0.1 
3σ (1 failure in 1000) 2.81 632 

  

Table 5.11, 
32 beer can buckling 

failure loads. 

Failure 
Load (lb) 

685 
753 
771 
782 
789 
794 
798 
859 
859 
861 
875 
897 
897 
899 
901 
901 
906 
906 
917 
935 
944 
951 
953 
960 
996 
1003 
1005 
1009 
1012 
1012 
1014 
1052 
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Fig. 5.10, Histogram of the 32 beer can buckling failure loads. 
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5.7.1.5 Correlation Summary 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

STAGS Allowable Load 
It is interesting to note that the computed knockdown factor as presented in [5.4] 
was 0.44.  This knockdown is not based on statistical data, but rather is a purely 
computed value based on the STAGs computed effect of imperfections. The 
buckling allowable based on this knockdown of 0.44 is 782 lb. Three of the 32 
cans failed below this value.  
 
HyperSizer Allowable Load 
The HyperSizer allowable load =693 based on the specifically defined CFs 
(η=0.10 and γμ = 0.5119)  from these 32 data points. 
 
The HyperSizer allowable load =722 based on the generally defined CFs 
(η=0.136 and μ1 = 0.3956, μ2 = -0.1144, and μ3 = 0.8751; see section 5.5)  from 
a larger collection of other test data, that does not include these 32 data points. 
 
The lowest failure load was 685. However, this minimum value is considered an 
outlier since it is more than 10% less than the next lowest failure load of 752.  So 
only one can, a possible outlier, failed lower than either buckling allowable.  
 
NASA SP-8007 Allowable Load 
The NASA SP-8007 empirical buckling knockdown of 0.3885 along with a 
theoretical buckling prediction of 1763 provides a buckling allowable of 685, 
which coincidentally matches exactly the lowest failure load of the 32 cans.  
 
The corresponding sigma level of confidence for a knockdown of 0.3885 can be 
backed out: 
 

( )ηγγ μ Kallowable −= 1  
 
with NASA γallowable = 0.3885, γμ = (average test)/(theoretical) = 903/1763 = 
0.512, and η = .1, this causes the NASA K factor to be ≈ 2.4 which translates to 
≈99.2% reliability. 
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5.7.1.6 Final comments 
Fig 5.11 shows cylindrical panel 
buckling test data as points. Each test 
data point is normalized against its 
theoretical value (vertical axis). The 
horizontal axis represents decreasing 
theoretical accuracy as the 
radius/shell thickness (r/t) ratio 
increases. Fig. 5.11 is related to the 
NASA SP8007 report. Note the large 
discrepancy between theory (red 
line) and test results, i.e. inaccuracy 
of theoretical. The design 
recommendation is an established 
knockdown defined as an equation 
that includes the r/t ratio. So 
regardless if the knockdown is 
expressed as a single value or as a 
curve fit equation, the NASA one 
knockdown approach defines a once-
and–for-all acceptable limit of risk.  
 
Other curve fit equations, such as the 
blue and green curves can be defined 
based on a function of selected 
parameters. Even though the 
knockdown (black curve) is 
somewhat dynamic based on 
changing variables, in this case the r/t 
ratio, the first shortcoming with this 
traditional approach is that the 
acceptable level of risk (black curve) 
is “cast-in-stone” when first defined, 
and for the most part unchanging as 
more test data becomes available. In 

fact, the actual comparison is rarely known by the practicing engineer.  
 
A second shortcoming is the acceptable level of risk defined originally may not meet the 
reliability requirement of your particular design (shown as green dashed-curve). A program 
manager should be able to choose required knockdown/reliability for each design project. 
Furthermore, insight and flexibility should be provided to bring each analysis failure mode to a 
consistent value. 
 
The third shortcoming, which also relates directly to the goal of efficient structural certification 
using analysis, is that with a single knockdown that takes the theoretical value (shown as red 
line) down to an allowable design-to value, does not provide nor expose any knowledge of an 
average or expected typical failure load, represented with a blue curve. So unlike being able to 

Fig. 5.11, Traditional one knockdown approach to 
cylindrical panel buckling, noted as a design 
recommendation. The black curve is the original NASA 
SP-8007 knockdown, the green curve, a possible more 
conservative knockdown, and the blue curve, the average 
(typical) failure. The original, one constant knockdown 
equation doesn’t give insight into the average test data, 
nor does it allow the engineer to choose his level of 
reliability, such as the green curve.  

  

r/t 
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use “typical” material properties for test predictions, the user is left to perform test correlations 
using a “design-to” failure analysis allowable, which should for almost all cases significantly 
under predict, and be very conservative to test results.  
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PART C:  NEW ANALYSIS METHODS DEVELOPED 

6 Composite Bonded Joint Stress Analysis and Failure  
 
A powerful new analysis capability, now available in HyperSizer, extends its thermoelastic and 
failure analysis formulations to examine the detailed stress fields of composite bonded joints and 
determine their margins of safety.  The goal of this new capability is to provide an efficient tool 
that is fast enough to be included in preliminary design, but still accurate enough to achieve near 
final design solutions. This new capability is called BondJo. 
 
In current practice, the complexity of bonded joint behavior requires generation and analysis of 
detailed finite element models that are time consuming to develop, run, and post-process.  Such 
detailed finite element analyses, which must include 3D solid elements, are seldom done in 
preliminary design, where the design dimensions, materials, layups and loads are constantly 
changing.  Therefore, the joint analysis is many times left to final design where changes become 
much more problematic and costly to implement. More frequently, specialty type codes such as 
A4EI by Hart-Smith are used in industry as rapid analysis tools. BondJo falls within this class of 
tools but is more accurate and solves more general loadings than A4EI (see section 6.3.1). 
 
BondJo captures the primary physics of the bonded joint problem in a very rapid procedure, (on 
the order of 1/40th of a second) meaning that bonded joint analysis not only can be performed in 
preliminary design, but actually becomes a part of the structural optimization procedure. 

 
BondJo resolves the full in-plane and interlaminar stress fields in the adherends and the shear 
and peel stresses in the adhesive layer.  In most bonded joint failures, damage initiates close to 
the joint free edge, propagates into the first one or two plies of the adherends and causes either 
delamination or fracture of laminated adherends. This type of failure is shown in Fig. 6.1.  In the 

Fig. 6.1, HyperSizer now includes the ability to predict composite 
bonded joint failure to help avoid failure such as this. 
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failure of adherends, the out-of-plane stresses play an important role, particularly in 
delamination.  BondJo’s ability to predict these stresses, coupled with its speed, makes BondJo a 
powerful software tool for preliminary aircraft design. 
 

6.1 Rapid, Accurate and Reliable Failure Prediction 
 
The purpose for developing the new 
HyperSizer-BondJo analysis code is 
predicting failure for composite bonded 
joints.  Fig. 6.1.1 shows a typical skin-
stringer type of aircraft structure, which 
could represent for example a wing or 
fuselage.  In previous versions, 
HyperSizer could isolate a section of 
this structure (b) for strength and panel 
stability analysis; however without the 
bonded joint analysis capability, it 
would miss failure modes of the type 
shown at (c).  This type of 
delamination failure is very common in 
the 1st or 2nd facesheet ply close to the 
bonded stiffeners, therefore capturing 
this failure early in the design process 
is key.   
 
In addition to delamination failures, 
several other failure modes have been 
identified as important for bonded 
joints.  Heslehurst and Hart-Smith 
[6.1.1] identified 6 broad categories of 
failure for bonded joints as shown in 
Fig. 6.1.2.  Categories ‘a’ and ‘b’ 
include failures that occur in the 
adherends while ‘c’ through ‘f’ include 
failures that occur in the adhesive 
layer. 
 

 

 

Fig. 6.1.1, A common composite failure 
mode for stiffened aircraft structure occurs 
at the reentrant corner of a bonded flange. 

b) 

c) 

a) 
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While these figures show failure modes for single lap joints, the issues and the failure modes are 
the same for all types of bonded joints, including bonded doubler joints that we use to represent 
the facesheet to stiffener joint of a stiffened panel. 
 
Fig. 6.1.3 again illustrates one of the most common types of failure bonded joints at the stiffener 
along with a sample failure criterion that attempts to predict that failure.  The important thing to 
note about joint failure criteria (detailed in Section 6.5), is that they rely completely on knowing 
the stress state in the joint.  This particular criterion depends on the interlaminar shear and peel 
stresses of the adherends, which in the past have been difficult to obtain without detailed FEA.  
BondJo provides a very rapid method of determining these stresses. 

 

6.1.1 References 
6.1.1 R. Heslehurst and J. Hart-Smith, The Science and Art of Structural Adhesive Bonding, 

SAMPE Journal, Vol. 38, No. 2, March/April 2002. 

 

Fig. 6.1.2, Failure modes in adhesively bonded joints identified by Heslehurst 
and Hart-Smith [6.1.1]. 

Adhesive Failures

Adherend Failures

Fig. 6.1.3, Failure prediction methods require accurate prediction of out-of-plane 
interlaminar shear and peel stresses. 
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6.2 Accurate Interlaminar 
Stress Predictions 

 
Deriving accurate stress and strain 
fields in the bonded joint begins with 
an understanding of the loading and 
boundary conditions of the assembled 
structure.   In Fig. 6.2.1 the typical 
skin-stringer stiffened structure is 
once again shown, this time with 
general membrane, bending, out of 
plane shear and pressure loads.  These 
loads could come from a finite 
element analysis, fuselage beam 
theory, or if determinate (such as 
pressurized tank hoop loads), typed by 
hand into the HyperSizer interface. 
 
 
These general airframe loads are 
reduced by HyperSizer into local 
“point” loads at the stiffened panel 
level (b) and these panel loads are sent 
to BondJo to resolve detailed stresses 
and strains in the joint itself, such as 
the interlaminar shear and peel 
stresses shown (c).  Note the 
generality of loads that are passed to 
the BondJo analysis including local 
deflections do to pressure, membrane 
forces, and bending moments in the 
direction transverse to the stiffener. 
 

 

 

Fig. 6.2.1, HyperSizer rapidly and accurately 
resolves aircraft stiffened structure panel loads into 
interlaminar stresses of the adhesive and laminate 

adherends. 

b) 

c) 

a) 

Adhesive τxy

Adhesive σpeel 
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6.2.1 In-Service Structural Panels vs. Standalone Test Articles 
In solving for the stresses and displacements, BondJo assumes that these joints deform in 
“cylindrical bending”, meaning deflections are a function of the panel y direction only.  
Deflections that vary in the x (or stiffener) direction caused by panel curvature in that direction, 
are disallowed.   These assumptions make it possible to solve stresses and strains in the stiffener 
bond for in-service stiffened panels in a very efficient manner.  
 
At first glance this might seem limiting; however, the cylindrical bending assumption in this use 
does not limit its applicability. For most in-service applications, this assumption and 
therefore the BondJo methodology is sufficient and appropriate. 
 
Consider the typical skin-stringer structure shown in Fig. 6.2.2.  In this situation, the stiffener to 
skin bonded joint is a piece of what is referred to as an “in-service” panel.  The panel is not 
isolated from other structure in the same way that a standalone test article would be.  A panel in 
this situation is supported between stiff ringframes, bulkheads or ribs, which causes two effects.   
 

 
First, the strain in the stiffener direction, εx, will be constant throughout the panel.  This is in 
contrast to the transverse strain, εy, which will be different between the panel facesheet and 
stiffener flange region (which is properly accounted for in BondJo).  Second, because the 
effective bending stiffness of the panel is several orders of magnitude greater in the stiffener 

Fig. 6.2.2, The effective boundary conditions on an “in-service panel” enforced uniform edge 
deformation. 

In Service Panel 
Boundary Condition 

 
Strain 

εx = constant 
 

Curvature 
κx ≈ κxy ≈ 0 

κx << κy 
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direction than in the transverse direction (i.e. D11 >> D22), the curvature in the stiffener direction 
will be much smaller than the curvature in the transverse direction.  In fact, in most in-service 
loading conditions, the curvature in the stiffener direction is nearly zero. 
 
In contrast to the in-service panel boundary condition is the case of a small, standalone test 
article that is free to deform in the stiffener direction.  This situation is depicted in Fig. 6.2.3. 
 

 
In this situation, unlike the in-service panel boundary condition, the panel is free to do several 
things that do not occur in true aircraft panels.  First, in the top view, it can be seen that the strain 
in both the x and y directions is non-uniform along the edges.  Second, as seen in the side and 
front views, the panel may curve both perpendicular and parallel to the stiffener direction (this 
will cause the test article to deform in a saddle shape).  Finally, because the individual plies each 
have primary stiffnesses in different directions, the edge may not remain planar, and in fact could 
take on a stair step deformation as shown in the side view.   
 
Accurately modeling this type of stand-alone problem requires theory that does not assume 
cylindrical bending and models full 3-D elasticity for the individual plies.  In general, this means 
going to 3-D solid model FEA.  The BondJo methodology is really intended for acreage panel 
structural problems and would not yet be expected to do well in regions of panel closeouts or 
stiffener terminations.  These types of problems would also require tests or detailed FEA. 
 
Our conclusion then is that for standalone bonded test articles, we would not expect accurate 
results, however for the majority of in-service aircraft bonded structures, BondJo is appropriate 
and will generate accurate stress and strain fields. 
 
 
 

Fig. 6.2.3, Free boundary conditions on standalone test article permit non-uniform 
edge deformation and curvature in both axes. 

 

Curvature due to 
eccentricity and 
Poisson’s effect 

Stair step strain of 
individual plies  
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6.2.2 In-Service Panel Deformations 
  

The deformation experienced by an in-service 
panel is referred to as “cylindrical bending”.  This 
basically means that the displacement and vertical 
deflection can be described as a function of the 
coordinate transverse to the stiffener (y) only.  A 
panel under these conditions can deform in these 
5 ways (illustrated in Fig. 6.2.4): 1) normal strain 
in x (εx); 2) normal strain in y (εy); 3) in-plane 
shear (γxy); 4) global panel bending in the y 
direction (κy); and 5) local panel bending in the y 
direction (κy) do to the eccentricity of the load 
path in the panel or do to applied pressure effects.  
The only deformations not allowed are bending in 
the x direction or panel twisting.  For most 
aircraft structures, however, these are considered 
to be minor effects. 
 
The formal definition of cylindrical bending is 
discussed in detail in Section 6.4.5 

Fig. 6.2.4, The five deformations of in-service panels are handled by BondJo  

x 

y 

z 
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6.2.3 In-Plane and Through Thickness Stress Distributions 
When HyperSizer-BondJo executes, its primary results are stress fields throughout the joint and 
margins of safety.   First, plots of stresses and strains are generated in the plane of the joint at any 
number of user-chosen z locations as shown by the light blue, purple and green circles of Fig. 
6.2.5.  These plots are represented by a user-defined number of points along the joint (panel y 
direction) and the failure criteria described in Section 6.5 are applied at each of these points. 
  

 

-σ33

at every 
ply depth

transformed to 
ply direction

at every 
ply depth

transformed to 
ply direction

-τxz

-τ23

-σzz

An example ply from Top 
Adherend (all plies analyzed)

An example ply from Bottom 
Adherend (all plies analyzed)

Adhesive Layer

-τ23

-σ33

 

Fig. 6.2.5, Interlaminar stress calculations throughout depth of bonded joint, including 
adhesive and laminated adherends. Note that adhesive stresses are in the panel 

coordinating system (x, y, z), adherend stresses are in each ply coordinate (1, 2, 3). 

Stresses and strains are 
calculated at a user-
defined number of 
points. 
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In addition to plots in the plane of the joint, BondJo also generates through-thickness stress plots, 
again at user-prescribed y locations throughout the joint.  Fig. 6.2.6 shows how interlaminar 
shear (red lines) and peel stresses (black lines) vary greatly as the free edge of the joint is 
approached.  Not only are the magnitudes different, but the character of the curves completely 
change near the free edge as the peel stress goes from compressive to tensile. 
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Fig. 6.2.6, Stress calculations performed by HyperSizer through the depth of the 
joint show how the interlaminar shear and peel stress vary greatly as the free 

edge of the joint is approached.  
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In Fig. 6.2.6, the thickest lines represent the through thickness stresses very close to the free edge 
(approximately ½ ply thickness away from the free edge, which is where the characteristic 
distance is assumed to be), while the lightest curves represent through thickness stresses 
approximately 20 ply thicknesses away.  Notice that the peel stress plot completely reverses from 
compression to tension in this short distance.  Without a tool like BondJo (or a detailed FEA), 
this effect would be completely missed.  This type of plot illustrates the need for a tool like 
BondJo that can include these types of effects early in the preliminary design process. 
 
A similar plot of in-plane stresses through the laminate, shown in Fig. 6.2.7, shows how they 
also vary like the interlaminar stresses near the joint free edge. The effects of the differing ply 
angles can be seen in the in-plane stress plots, where the slant represents the variation of stress 
through an individual ply caused from laminate curvature. 
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Fig. 6.2.7, In-plane stresses through the laminate and adhesive depth 
also vary near the joint free edge. 
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6.2.4 Non-linear Adhesives 
Several other effects are applicable to bonded joint analyses that can have substantial effects on 
both the stress-strain fields and failure predictions.  The first of these effects is the non-linear 
stress-strain relationship of the adhesive layer.  Many adhesive materials used in composite 
bonded joints are known to exhibit non-linear behavior.  Several non-linear material models have 
been developed and implemented in BondJo and are described in Section 6.4.   
 
The net effect of the adhesive non-linear behavior is to lower the overall stresses, especially the 
peak interlaminar shear and peel stresses at the free edge of the joint, as shown in Fig. 6.2.8.  
 

 
 

 

τxy 

σzz 

Effect: 
Reduced interlaminar 
& peel stresses 

σ 

ε 

Non Linear 
Adhesive 

Fig. 6.2.8, Non-linear adhesive effects can reduce peak interlaminar shear and peel 
stress near the free edge of a bonded joint.  Analysis of non-linear adhesives is now 

available in HyperSizer-BondJo.  
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Fig. 6.2.10, Stress-strain curves of  
epoxy AY103 adhesive 

 

z 

x 

t2 

L L2 

Adherend 1 

Adherend 2 

ta

Fig. 6.2.9,  Composite bonded doubler joint example configuration 

t1 

6.2.4.1   Bonded Joint Example with Non-Linear Adhesive 
The following example problem was modeled with 
HyperSizer-BondJo’s non-linear adhesive joint capability and 
the results for several non-linear material models are shown 
on the following pages.  Notice how in all cases the peak 
interlaminar shear and peel stresses are reduced for the non-
linear adhesive.  

 

 

Adherend 1: Graphite/Epoxy 
E1 = 164.0GPa 
E2 = E3 = 8.3 GPa  
G12 = 2.1 GPa 
v12 = 0.34 
lay-up: 12 plies (from bottom to top) 
[60o/30o/0o/60o/30o/0o/60o/30o/0o/60o/30o/0o]

 

Adherend 2: Graphite/Epoxy 
E1 = 164.0GPa 
E2 = E3 = 8.3 GPa  
G12 = 2.1 GPa 
v12 = 0.34 
lay-up: 12 plies (from bottom to top) 
[0o/30o/60o/0o/30o/60o/0o/30o/60o/0o/30o/60o]

 

Adhesive: (epoxy AY 103) 
Ea = 2.8 GPa 
va = 0.4 
 λ = 1.3  
 Sprop = 27.0 MPa 
 Sult =71.5 MPa 

       eult = 0.049 
(See Fig. 6.2.X, Stress-strain curve of AY103) 

Dimensions: 
L  = 20 mm 
L2 = 30 mm 
t1 = 1.5 mm 
t2 = 1.5 mm 
tadhesive = 0.05 mm 
ply thickness = 0.125 mm 

 

 
Loading and Boundary Conditions: 

Right Face: Nxx = 600 N/mm; Qx = 0; Nxy = 0; βx = 0 
Symmetry (left side):  → u0 = w = β = v0 = 0 

 
Number of Segments:  

Region 1 (M1) = 10, Region 2 (M2) = 5 
Number of x-points within each region = 40 

 

 

Note: This example uses the 
typical academic sign 
convention.  See Section 
6.11 for details. 
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Results 

 

 

 
 

  Adhesive model: Exponential Adhesive model: Polynomial

 
 

Adhesive model: Ramberg-Osgood Adhesive model: Bi-linear 1

 Adhesive model: Elasto-Plastic

Black = Peel Stress (σz) 
Red = Interlaminar Shear (τxy) 
Blue = Interlaminar Shear (τyz) 

Solid Line = Non-Linear 
Dashed Line = Linear (Elastic) 

Fig. 6.2.11, Linear versus non-linear results for a bonded doubler, five different material 
models compared 
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6.2.5 Scarfed and Stepped Joints 
A second effect that is included in BondJo is that of a scarfed or stepped adherend as shown in 
Fig. 6.2.12.  While a theoretical formulation for a true scarfed adherend exists, in the commercial 
HyperSizer software today, the scarfed joint is actually modeled approximately with many small 
steps.  An example of this is shown in the NASA Validation Example (Section 6.10.3) where a 
25° scarf was approximated with 9 steps.  
 
Just as with the non-linear adhesive effect, the net effect of scarfing or stepping the adherend is 
to lower the overall stresses, especially the peak interlaminar shear and peel stresses at the free 
edge of the joint, as shown in Fig. 6.2.12.  
 
 

 
 

 

 

 

Effect: 
Reduced interlaminar 
& peel stresses 

Stepped 

Scarfed 

Fig. 6.2.12, Scarfed or stepped effects can reduce peak interlaminar shear and peel 
stress near the free edge of a bonded joint.  Analysis of the stepped joint 

configuration is now available in HyperSizer-BondJo. 
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When BondJo solves the stepped or scarfed joint (just as with the non-stepped joint), the through 
thickness out-of-plane stresses are not constant or even linear through each ply but are actually a 
cubic function of z. 
 
 

 

 

Fig. 6.2.13, HyperSizer BondJo computes stresses through the thickness of each ply.  
Note the variation of interlaminar stress in the last ply in contact with the adhesive.    
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6.2.5.1   Bonded Joint Example with Stepped Adherend 
The following example problem of a stepped bonded doubler 
joint was modeled with HyperSizer-BondJo’s non-linear adhesive 
joint capability and the results for several non-linear material 
models are shown on the following pages.  These different non-
linear models are described in detail in Section 6.4. 

 
Adherend 1: Graphite/Epoxy 

E1 = 164.0GPa 
E2 = E3 = 8.3 GPa  
G12 = 2.1 GPa 
v12 = 0.34 
lay-up: 12 plies (from bottom to top) 
[60o/30o/0o/60o/30o/0o/60o/30o/0o/60o/30o/0o]

Adherend 2: Graphite/Epoxy 
E1 = 164.0GPa 
E2 = E3 = 8.3 GPa  
G12 = 2.1 GPa 
v12 = 0.34 
lay-up: 12 plies (from bottom to top) 
[0o/30o/60o/0o/30o/60o/0o/30o/60o/0o/30o/60o]

Adhesive: (epoxy AY 103) 
Ea = 2.8 GPa 
va = 0.4 
 λ = 1.3  
 Sprop = 27.0 MPa 
 Sult =71.5 MPa 
 eult = 0.049 

 See Fig. 6.2.X, (previous example)  
          Stress-strain curve of AY103 

Dimensions: 
L  = 20 mm               s1 = 14 mm 
L2 = 30 mm               s2 = 3 mm 
t1 = 1.5 mm               s3 = 3 mm 
t2 = 1.5 mm          δ1 = δ2 =δ3 = 4*ply 

thickness 
tadhesive = 0.05 mm 
ply thickness = 0.125 mm 

 

 
Loading and Boundary Conditions: 

Right Face:  Nxx = 600 N/mm;      Qx = 0;         Nxy = 0;         βx = 0 
Symmetry (left side):  → u0 = w = β = v0 = 0 

 
Number of Segments:  

Region 1 (M1_step1, M1_step2, M1_step3) = [8 5 5], Region 2 (M2) = 5 
Number of x-points within each region = 40 

δ3

L L2

s1 s2 s3

δ1
δ2

t1

t2

Fig. 6.2.14, Composite stepped bonded doubler joint example configuration   

Note: This example assumes 
the typical academic sign 
convention.  See Section 
6.11 for details. 
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Results 

 

 

 

 

 
 

 
 
 

  Adhesive model: Elasto-PlasticAdhesive model: Ramberg-Osgood

  Adhesive model: Exponential Adhesive model: Multi-linear

Fig. 6.2.15, Linear versus non-linear results for a stepped bonded doubler, four different 
material models compared. 

Solid Line = Non-Linear 
Dashed Line = Linear (Elastic) 

Black = Peel Stress (σz) 
Red = Interlaminar Shear (τxy) 
Blue = Interlaminar Shear (τyz) 
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6.2.6 Spew Fillets 
 
A third effect that can change the stresses in the bonded joint is that of including a spew fillet as 
shown in Fig. 6.2.16.  In manufactured joints, this type of fillet develops naturally as a result of 
the manufacturing process.  Since the inclusion of the fillet reduces the effect of the singularity at 
the reentrant corner and reduces the peak stresses at the free edge, this will be an important effect 
to consider.   While we realize its importance, this effect is not yet included in the HyperSizer-
BondJo code.  Our plan is to develop the analysis theory and implement in a future release. 
 
 
 

 

Effect: 
Reduced interlaminar 
& peel stresses 

The fillet may take the shape of a 
typical fillet depicted in purple, or 
a bubble shape as depicted in pink 
and is modeled as a wedge as 
depicted in green. Since the actual 
shape is unknown, perhaps the 
more important issue is accounting 
for its volume and computing the 
reduced interlaminar & peel 
stresses at the reentrant corner. 

Fig. 6.2.16, Spew fillets can reduce peak interlaminar shear and peel stress near the 
free edge of a bonded joint.  This effect is not yet accounted for in Hyperizer BondJo. 
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6.3 Why a New Capability was Developed 
Several methods for analysis of composite bonded joints existed prior to the development of 
HyperSizer-BondJo.   These methods range from closed form analytical methods such as Hart-
Smith A4EI to complex solid model 
FEA where all physics and general 
boundary conditions are included.  
HyperSizer-BondJo lies between by 
addressing some of the limitations of 
Hart-Smith, while at that same time 
providing an efficient analysis that 
can be included in preliminary design. 

6.3.1 Contrasting HyperSizer 
with Hart-Smith (A4EI) 

The cylindrical bending formulation 
of HyperSizer-BondJo allows for a 
more general problem solution than 
that allowed in Hart-Smith.   This is 
illustrated in Fig. 6.3.1, where the 
additional loadings of Ny, Qy and 
Nxy are not considered with Hart-
Smith (as well as most other non-FEA 
bonded joint analysis methods), yet 
are included in HyperSizer-BondJo. 
 
A second consideration is that while 
Hart-Smith can calculate both shear 
and peel stress in the adhesive, the 
approach is not unified as it is with 
BondJo and peel stress is actually 
backed out of the analysis by applying 
a curvature, looking at the bending 
moments in the adherends, and 
calculating peel stress from those 
curvatures.  This approach is less 
accurate and less general than the 
HyperSizer-BondJo unified approach. 
 
Finally, Hart-Smith provides no out-
of-plane stresses (interlaminar shear 
or peel) in the adherends, which are 
necessary for many bonded joint 
laminate failure modes.   
 Fig. 6.3.1, Hart-Smith (A4EI) permitted loads, (shown in the 

typical academic coordinate system) in contrast to those loads 
accounted for in HyperSizer-BondJo, which are shown with 

blue arrows. 

 

 

Flip over 

 

Loads allowed in 
Hart-Smith (A4EI) 
analysis 

Additional loads 
allowed in BondJo 
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Contrast between HyperSizer-BondJo and Hart-Smith is provided in Table 6.3.1. 
 

Table 6.3.1, Comparison of HyperSizer-BondJo to Hart-Smith A4EI 
(All coordinates listed using the typical academic sign convention) 

 Bonded Joint Analysis 
By Hart-Smith (A4EI) 

Bonded Joint Analysis 
In HyperSizer®  

 
Solver 

 

1-D closed-form stress analysis, no 
unified approach is used. 

Mortensen’s close-form solutions, a unified 
approach and modification. [6.3.1] 

 
Joints 

Conventional joints: Single-, double-
lap, scarfed, stepped – joints 
(adherend can be straight or scarfed, 
see details in the section: joint type). 

Conventional joints: Single-, double-lap, 
scarfed, stepped – joints (adherend can be 
straight or scarfed (ply-drop-off)). 

Dimension 1D problem 2D – generalized cylindrical bending.  
 

Mechanical 
loads 

Nx, Qx, Mxx. Nx, Qx, Mxx, Ny, Qy, and Nxy (Myy and Mxy not 
supported). Also can enter strains and 
curvatures and in any combination with the 
forces and moments.  

 
 
Loads and 

effects 
Non-

mechanical 
loads 

1. Thermal stresses 
2. defects in bond layer, such as    
moisture, porosity, thickness 
variation are considered, etc. 

1. Thermal stresses  
2. Moisture in laminates  
3. Electromagnetic effects  

 
 

material 
 

Linear elastic homogeneous isotropic 
beam (not composite), no transverse 
deformation is accommodated. 

Linear elastic classical laminate (orthotropic, 
and represented by A, B, D matrices), no 
transverse deformation is yet accommodated 
but will be in a future release. 

 
 
 

Adherends 
 

output 
1. Longitudinal normal stress and 
strain, as well as displacement (u, w). 
2.Interlaminar stresses are not 
available 

1. In-plane stresses, strains, and displacement 
(u, v, w).  
2. Interlaminar shear and peel stresses are 
available.  

 
 

material 
 

1. Linear tension-shear spring. 
2. Elasto-plastic material. 

1.2D isotropic linear elastic spring. 
2. High order theory (to be developed) 
3. Elasto-plastic material 
4. Spew fillet effect (to be developed) 

 
 
 

Adhesive 
 

Output 
 

Shear and peel stresses only, which 
are constants through the thickness 
by using the spring model. 

Shear and peel stresses only, which are 
constants through the thickness by using the 
spring model, but may vary if using high 
order theory (HOT).  

 
 
 
 

 
 

Failure analysis and 
design rule 

1. select the joint design so as to 
ensure failure in the adherend rather 
than the adhesive; 
 
2. ductility of adhesives is beneficial 
in reducing stress peaks in the 
adhesive;  
 
3. Providing sufficient overlap length 
to ensure that some of the adhesive is 
so lightly loaded that creep cannot 
occur there. 
 

1. Damage zone failure criterion is 
introduced – take the stress/strain values at 
the points certain distance away from the 
singular points or the average over a distance. 
2. Composite adherend failure caused by in-
plane and the interlaminar stresses. 
3. Adhesive cohesive failure is based on the 
max. effective strain (for complaint 
adhesive). 
4. Failure rule for brittle adhesive. 
5. Failure rule for interfacial debonding 
(adhesive / adherends). 
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Convergence of solution  Has stability/convergence problems 
with stepped joints. (reported by NG, 
OAI, others) 

Convergence is more robust. Can manually 
choose number of points per segment (More 
automation later) 

Single-lap 
with 
straight 
adherend 

Solved adhesive shear stress from 
shear-lag model; introduced bending 
moment caused by eccentricity of 
loading path to solve peel stress. 

Modified Mortensen’s Unified approach 
(generalized plane strain) 

Single-lap 
with scarfed 
adherend 

Not clear the exact procedure used.  
The solution is given in power series. 
Only the peak values of stresses are 
solved, no distribution along the 
bondline. 

Modified Mortensen’s Unified approach 
(generalized plane strain) 

double-lap 
with 
straight 
adherend 

Solved adhesive shear stress from 
shear-lag model; Solved peel stress 
from beam-on-elastic foundation 
model. 

Modified Mortensen’s Unified approach 
(generalized plane strain) 

double-lap 
with scarfed 
adherend 

Not clear the exact procedure used.  
The solution is given in power series. 
Only the peak values of stresses are 
solved, no distribution along the 
bondline. 

Modified Mortensen’s Unified approach 
(generalized plane strain) 

Single sided 
scarfed lap 
joint 

Not clear the exact procedure used.  
The solution is given in power series. 
Only the peak values of stresses are 
solved, no distribution along the 
bondline. 

Modified Mortensen’s Unified approach 
(generalized plane strain) 

Double 
sided 
scarfed lap 
joint 

Not clear the exact procedure used.  
The solution is given in power series. 
Only the peak values are solved, no 
distribution along the bondline. 

Modified Mortensen’s Unified approach 
(generalized plane strain) 

Single sided 
stepped lap 
joint 

Shear-lag model, only shear stress is 
solved. 

Modified Mortensen’s Unified approach 
(generalized plane strain) 

Double 
sided 
stepped lap 
joint 
 

Shear-lag model, only shear stress is 
solved.  

Modified Mortensen’s Unified approach 
(generalized plane strain) 

Bonded 
doubler 
with 
straight 
adherend 

Solution could be obtained by 
modification of that of the single-lap 
joint with straight adherend. 

Modified Mortensen’s Unified approach 
(generalized plane strain) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Joint types 
[Fig. 6.4.1] 

Bonded 
doubler 
with 
stepped 
adherend 

Not available Modified Mortensen’s Unified approach 
(generalized plane strain) 
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Robustness 

Not robust for scarfed or stepped 
joints.  
 

The solution is very stable, good for 
conventional joints, some verification has 
been performed with FEA as detailed in 
section 6.9, but more is needed.  
 

Run time N/A Around 0.1 sec. with 15 segments in the 
overlap region for linear analysis of 
double-lap joint with straight adherends.  
1/40 sec for bonded doubler.  

 
 
 
 

Note: conclusion on Hart-smith’s approach to analyzing bonded joints is based on limited publications, 
particularly MIL-HDBK-17-3E [6.3.2] and NASA report [6.3.3 - 6.3.5]. 
 



 

92 

 

6.3.2 Contrasting HyperSizer with FEA 
Table 6.3.2, Comparison of HyperSizer-BondJo with Stresscheck FEA 

 Bonded Joint Analysis 
With FEA (StressCheck®) 

 

Bonded Joint Analysis 
By HyperSizer-BondJo® 

 
Solver 
 

p-version finite element method 
[6.3.6]. 

Mortensen’s close-form solution 
[6.3.1]. 

 
Joint type 

Conventional joints and more 
general joint configuration. 

Conventional joints: Single-, double-
lap, scarfed, stepped – joints (adherend 
can be straight or scarfed (ply-drop-
off)). 

 
Dimension 
 

2D – plane strain. 
3D – thin solids (by extruding 2D 
mesh). 

2D – cylindrical bending 
 

Mechan
ical 
loads 

2D plane strain: FX (DX), FZ (DZ), 
MX (θy), MZ(θy). 
3D: Multi-axial loads.  
See Fig. 6.3.4 for details 

Nx, Qx, Nxy, Mxx, Ny, Qy, Nyx, (ref. plane 
is the neutral axis of each adherend). 
See the sign convention in Section 6.11. 

 
 
 
Loads 

Non-
mechani
cal 
loads 
 

Thermal Thermal, moisture in laminates. 
Electromagnetic effect (future 
development). 

material 
 

The adherend was meshed with 
several layers of single-plies usually 
adjacent to the bondlines and sub-
laminates, to which homogenous 
linear elastic materials (orthotropic 
or isotropic) properties are calculated 
and assigned. 

Linear elastic classical laminate  
(A, B, D matrices).  

 
 
 
Adherend 

output 
 

All directional (3D) stresses, strains 
and displacements. 
Interlaminar stresses are available. 

In-plane stress, strain components, and 
displacement (u, v, w). Interlaminar 
stresses are not available. 

material 
 

Continuum homogenous isotropic 
linear elastic / nonlinear materials 

2D isotropic linear elastic spring 
High order theory (future development). 
Non-linear material models 

 
 
 
Adhesive Output 

 
All directional (3D) stresses, strains 
and displacements. 

Shear and peel stresses only, which are 
constants through the thickness by using 
the spring model, but may vary if using 
high order theory. 

 
Singularities at the 
free edges or bi-
material interface 
corners 
 
 

Not intend to capture singularities, 
zone around reentrant corner is 
considered to be “polluted” and not 
analyzed.  Compared to h-method, it 
reaches convergence rapidly in the 
vicinity of singular points with 
relatively coarse mesh. 

Can not capture the singularities. The 
solutions at the singular points are 
stable as geometry, material and 
external loads change. 
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Failure criterion 

1. Damage zone failure criterion is 
introduced – take the stress/strain 
values at a certain distance away 
from the singular points.  
2. Composite ply failure is based on 
the interlaminar stress interaction 
rule. 
3. Adhesive cohesive failure is based 
on the max. effective strain (for 
compliant adhesive). 
4. Not known if failure rule exists for 
brittle adhesive. 
5. Not known if failure rule exists for 
interfacial debonding (adhesive / 
adherends). 
6. Not known if failure rule exists for 
metallic adherends.  
7. Continuously extracting stress/ 
strains at critical points or zone to 
check with failure criterion. 
 
 

Suggested failure criteria include: 
1. Damage zone failure criterion.  
2. Composite ply failure caused by the 
interlaminar stresses.  
3. Adhesive cohesive failure is based on 
the max. effective strain (for complaint 
adhesive). 
4. Failure rule for brittle adhesive. 
5. Failure rule for interfacial debonding 
(adhesive / adherends). 
6. Failure rule for metallic adherends.  

 
Process 
 
 

1. Automated convergence reporting. 1. The convergence of results not an 
issue for a reasonable number of 
segments.   

 
 
Pre-process 
 

In the graphics user-interface, input 
1. Geometry 
2. Material properties 
(orthotropic/isotropic), laminate (ply 
property, angle, etc, but generate 
effective homogenous material 
properties), elastoplastic properties 
for adhesive. 
3. Meshing parameter 
4. External loads and B.C. 

Input the followings through the 
HyperSizer interface (or through ASCII 
files in Matlab). 
1. Geometry 
2. Material properties for laminate 
(giving ply properties and angle), 
elastoplastic properties for adhesive. 
3. External loads and B.C. 

 
 
 
 
 
 
Post-process 
 

1. Extract engineering information 
(stress/strain) in any user defined 
coordinate system, or in the lamina 
for both flat and cylindrical 
description of the laminate 
properties. 
2. Compute average stress/strain 
along element edges, element faces, 
and arbitrary curves or element 
volume. 
3. Color coding of laminate materials 
makes visualization easier. 
4. Visualize the result output. 

1. Could extract engineering 
information (stress/strain) in any user 
defined coordinate system, or in the 
lamina for both flat and cylindrical 
description of the laminate properties. 
2. Could compute average stress/strain 
along certain curves or volume (not 
arbitrary). 
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Special features 

1. Design load: First the design load 
is applied to the bonded joint and, 
after a material nonlinear analysis is 
performed, the margins of safety are 
computed for the different modes of 
failure identified for the joint. For 
each mode of failure a different 
expression for the margin of safety is 
required, which may be based on 
average quantities.  
2. Failure load: After the design load 
analysis, the load is incremented by a 
specified amount and the solution is 
performed again. At the end of each 
load step a check is performed to 
determine whether any of the failure 
criteria has been exceeded. Once the 
first failure mode is reached, it is 
possible to stop the analysis or 
continue to increment the load until 
all margins are exceeded. 

 

 
Run time 

Not sure. Approx. 0.025 seconds for one analysis, 
not including pre or post processing 

 
Robustness 

Can solve more general joint 
configurations. 

The solution is very stable, good for 
conventional joints. 
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6.3.2.1 When is 2D FEA Inadequate and 3D Solid Model FEA required 
In general, when analyzing bonded composite joints with FEA, 3D solid finite elements are 
required to solve for the in-and out of plane stresses for the following reasons. 
 

1. To capture the out-of-plane effects and to compute the full stress field in the adherends, 
where the output stress components include σxx, σyy, σzz, σxy, σxz, σzy. The out-of-plane 
stress components σxz, σxy, in particular can not be obtained by using 2D plane stress, 
plane strain, or shell element FE models. 

 
2. To account for off-axis plies (such as +/-45°) in laminated adherends. Although 

generalized plane strain elements (such as Ansys PLANE183, PLANE 182 elements) 
allow for 3D material property inputs, the effects of these off-axis plies (such as in-plane 
shear, τxy) would not be seen without solid elements. 

 
3. For a stand-alone test panel, as described in Fig. 6.2.3, non-uniform strain and curvature 

in each direction requires a full 3-D elasticity solution and hence would require 3-D solid 
elements in the FEA.  This same argument applies to areas such as panel closeouts or 
stiffener terminations where the stress and strain fields are very general.  

 
Because HyperSizer-BondJo is intended to solve problems involving in-plane shear and general 
off-axis plies, the finite element models that we used for verification use solid elements.  
Although our goal is not to solve problems such as the stand alone test article, points 1 and 2 
above dictate that solid models are required. 

 

 

y 

z 

x 

Detail I

Detail I 

Fig. 6.3.4, Meshes of 3D finite element model for the bonded doubler (based on 
HyperSizer panel coordinate system). 

A 
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The finite element model developed for the bonded doubler verifications to HyperSizer-BondJo 
were initially constructed using the commercial finite element package ANSYS using 37,312 
eight-noded anisotropic solid elements (SOLID64). Mesh density along the longitudinal 
direction gradually increases toward the adhesive free edge from both symmetric plane and right 
end.  The adhesive layer was modeled using four layers of elements to capture the through-the-
thickness gradient of peel and shear stresses. To obtain accurate solution for out-of-plane 
(interlaminar) stresses in the adherends, 24 layers of elements were used in the through-the-
thickness direction. Each ply of the laminated adherend thus can be explicitly modeled with one 
or more layers of elements. Four elements were used through the width. Fig. 6.3.4 shows the 
finite element mesh for the entire domain and the details at the adhesive free edge. The boundary 
conditions at the symmetric plane (y=0, left side) is uy = 0 and uz = 0 at bottom node A.  The 
front and back planes are constrained in the x-direction, i.e. ux = 0, to reflect in-service stiffened 
panel boundary conditions. The boundary conditions at the right end of plate depend on the 
problem of interest. 
 
For the panel in-service boundary condition, there are no variations of stress or displacement in 
the x-direction, therefore the number of elements in this direction theoretically do not affect the 
results.  However, fewer elements (for example, going to one element in this direction) may 
result in over-constrained boundaries and thus cause FEA numerical problems. In the ANSYS 
model, four elements were used through the width, although in future analyses, this number may 
be reduced to two.   

6.3.2.2 Observations from HyperSizer – FEA comparisons 
In one of our marquee verification examples, laminated, composite joint results from 
HyperSizer-BondJo are compared with those from the p-based finite element analysis code, 
Stresscheck.  The problem chosen is complex enough to test out all of the features of the 
software.  Because the adherends are laminates, finding the through-the-thickness stress 
distribution requires explicit modeling of each ply in the finite element model. The geometry and 
materials for this problem are described in Section 6.9.2 and in Volume 3, Section 7. 
 
The FEM was initially built in-house using the commercial FEA analysis package, ANSYS. 
After many weeks of effort to obtain good solutions from this model, this effort was abandoned.    
Efforts to get good results were unsuccessful and we were never able to determine if the 
problems were related to our inexperience with this type of laminated solid element model, mesh 
refinement, or limitations with ANSYS.   Our company contains no experts in solid FEA 
modeling, however in talking with others in industry, we determined that perhaps ANSYS was 
not the tool of choice for this type of problem.  Two FEA packages have emerged as leaders for 
this type of detailed analysis, Stresscheck and Abaqus.   
 
Using Stresscheck, with the help of Lockheed Martin, we were able to build a robust verification 
model for comparison with HyperSizer-BondJo.  While the results between the two codes were 
not identical, there is in general a good match.    
 
First, the trends in all stresses are very similar between the codes with in-plane stresses being 
virtually identical and out-of-plane stresses differing somewhat near the free edge. In most cases 
where the results differ, however, HyperSizer-BondJo tends to predict higher stresses, resulting 
in more conservative answers. 
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Second, in preliminary design, where geometry, materials, layups and loads can be constantly 
changing, it would be impractical to perform FEA for each design iteration.   Our 
recommendation is to use a tool like HyperSizer-BondJo for preliminary design and then verify 
with FEA as required for final design. 
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6.4 Theoretical Development of Bonded Joint Stress Analysis 

6.4.1 Summary 
The method for stress analysis of BondJo is 
developed based on the Mortensen’s [6.4.6] 
unified approach for bonded joints and is 
extended to: a) generalized plane strain to admit 
longitudinal mechanical loads; b) accommodate 
hygrothermal loads; and c) compute out-of-plane 
interlaminar shear and peel stresses in the adherends. The adherends are modeled as linear 
classical laminates in generalized cylindrical bending described by using ‘Love-Kirchhoff’ 
theory. Both linear and nonlinear behaviors of adhesive layer are admitted in the analysis. For 
linear analysis, the adhesive layer is modeled as continuously distributed linear 
tension/compression and shear springs. Inclusion of nonlinear behavior of adhesive in the 
analysis is by using a secant modulus approach for the nonlinear tensile stress–strain relationship 
in conjunction with yield criterion. Based on the constitutive and kinematic relations for the 
adherends, the constitutive relations for the adhesive layers are adopted. Finally, the equilibrium 
equations for the joints are derived, and by combination of these equations and relations, the set 
of governing equations is obtained. This results in a set of first order ordinary differential 
equations, called the governing system equations, describing the system behavior. The governing 
system equations are solved numerically using the ‘multi-segment method of integration’.  After 
the governing system equations are solved, the in-plane stress components of adherends can be 
calculated directly through laminate constitutive equations derived from the Classical 
Lamination Theory (CLT).  Unlike the in-plane stress components, the interlaminar stress 
components of adherends are obtained through point-wise equilibrium equations. 

6.4.2 Symbols 
 

Table 6.4.1, Symbols used in BondJo theoretical development 
 

u0, v0, w Middle plane displacements in x, y and z directions respectively 

βx Middle plane slope with respect to x-axis 

},,{ xyyx κκκ=κ  Curvatures of middle plane of laminates 

xxN , yyN , xyN  In-plane stress resultants 

xxM , yyM , xyM  In-plane moment resultants 
*
xxN , *

yyN  and *
xyN  Hygrothermal in-plane stress resultants 

*
xxM , ∗

yyM , ∗
xyM  Hygrothermal in-plane moment resultants 

Qx, Qy Shear out-of-plane forces acting on the planes with normal in x and y 
directions 

jkA , jkB  and jkD  Laminate extensional, coupling and flexural rigidities 
)(k

ijQ  In-plane stiffness matrix of the kth ply 

Note: All theoretical development in 
Section 6.4 is presented assuming the 
typical academic sign convention.  See 
Section 6.11 for details. 
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{yi} Vector containing fundamental variables 
},,,,,,,{}{ 00

i
x

i
xx

i
xy

i
xx

ii
x

iii QMNNvwuy β=  
)]([ rr

ij xA  A (m, m) sub-coefficient matrix for the system of governing equations

{ })( rr
i xB  A (m,1) sub-matrix of non-homogeneous load terms in system of 

governing equations 
ε* Hygrothermal in-plane strain in laminates 

τax, τay, σa Adhesive longitudinal shear, transverse shear and peel stresses 

γax, γay, εaz Adhesive longitudinal shear, transverse shear and peel strains 

α and β  Thermal expansion coefficients and moisture expansion coefficients 

σxx, σyy, σxy  In-plane stress components 

τxz, τyz, σzz Out-of-plane stress components 

εxx, εyy, γxy  In-plane strain components 

γxz, γyz, εzz Out-of-plane strain components 

σ1, σ2, σ3  The principal stresses 

ε1, ε2, ε3  The principal strains 

e0 Constant strain in y-direction applied to joints 

},,{ 0000
zyx εεε=ε  In-plane strain of the middle plane of laminates 

Ea, Ga Young’s modulus and shear modulus of adhesive 

s Effective stress 

J2D The second invariant of the deviatoric stress tensor 
J1 The first invariant of stress tensor 

σe Compressive yield stress  

σs Tensile yield stress 

λ Ratio of the compressive yield stress to the tensile yield stress 
e Effective strain 

I2D The second invariant of the deviatoric strain tensor 
I1 The first invariant of strain tensor 

t1 Thickness of adherend 1 

t2 Thickness of adherend 2 

ta Thickness of adhesive layer 
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6.4.3 Bonded Joint Concepts Analyzed By BondJo 
The theory presented herein is applicable to the following joint concepts and analysis programs 
that were developed for each under this SBIR.   
 

Single-lap joint with straight adherend Single-lap joint with scarfed adherend 

Double-lap joint with straight adherend Bonded doubler joint with straight, scarfed, or 
stepped adherend 
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Single sided stepped joint  Single sided scarfed joint  

Double sided stepped joint  Double sided scarfed joint  

Fig. 6.4.1, Composite bonded joint configurations implemented in BondJo versions. 
The bonded doubler (panel stiffener joint) and single lap joint are part of the 

commercial HyperSizer-BondJo release. 
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6.4.4 Basic assumptions for the structural modeling of bonded joints 
The basic restrictive assumptions of the structural modeling are the following: 
The adherends: 

• Beams or plates in cylindrical bending, which are described by use of ordinary 
‘Kirchhoff’; plate theory (‘Love–Kirchhoff’ assumptions). 

• Generally orthotropic laminates using classical lamination theory (e.g. asymmetric and 
unbalanced composite laminates can be included in the analysis). 

• The laminates are assumed to obey linear elastic constitutive laws. 
• The strains are small, and the rotations are very small. 

 
The adhesive layer: 

• Modeled as continuously distributed linear tension/compression and shear springs. 
• Inclusion of non-linear adhesive properties, by using a secant modulus approach for the 

nonlinear tensile stress–strain relationship in conjunction with a modified von Mises 
yield criterion. 

 
Load and boundary conditions (typical academic sign convention): 

• General boundary and load conditions. One of each pair in the following can be applied: 
(u0 ~ Nxx), (v0 ~ Nxy), (w ~ Qx), (βx ~ Mxx) 

• Thermal load: uniform temperature change ΔT 
• In-plane transverse (y) direction, uniform strain εyy

0 can be applied (generalized plane 
strain), or the equivalent transverse force, Nyy. 

• Can get reaction (moments) in y-direction: Myy, Mxy. 
 
The system of governing equations is set up for two different cases, i.e. the adherends are 
modeled as plates in cylindrical bending or as wide beams.   
 

6.4.5 Adherends as Plates in Generalized Cylindrical Bending 
 
The generalized cylindrical bending can be defined as a wide plate, where the longitudinal 
displacement and vertical deflection can be described as a function of the longitudinal coordinate 
only, while the in-plane transverse displacement can accommodate generalized plane strains. As 
a consequence of this, the longitudinal displacements and deflection in the width directions will 
be uniform, while the in-plane transverse displacement varies linearly. Thus, the displacement 
field can be described as: 

 )(00 xuu ii =                )(000 xvyev iii +=              )(xww ii =                              (6.4.5.1) 
where u0 is the midplane displacement in the longitudinal direction (x-direction), v0 is the 
midplane displacement in the width direction (y-direction), and w is the displacement in the out-
of plane transverse direction (z-direction), e0 is the uniform strain in y direction The 
displacement components u0, v0, w are all defined relative to the middle surfaces of the 
laminates, and i corresponds to the laminate/adherend number..  
 
The boundary conditions at the boundaries in the width direction are not well defined within the 
concept of ‘cylindrical bending’’. However, it is assumed that there are some restrictive 
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constraints on the boundaries, such that they not are capable of moving and rotating freely. It 
should be noted that the concept of ‘cylindrical bending’; is not unique, and that other definitions 
than the one used in the present formulation can be adopted, see Whitney [6.4.10].  
 
Considering the adherends are subjected to both mechanical and non-mechanical (such as 
hygrothermal strains) loads together, the constitutive equations for the laminated adherends are 
given as: 
 

∗−−++= i
xx

i
xx

ii
x

iiii
x

ii
xx NwBvAeAuAN ,11,016012,011  

∗−−++= i
yy

i
xx

ii
x

iiii
x

ii
yy NwBvAeAuAN ,12,026022,012  

∗−−++= i
xy

i
xx

ii
x

iiii
x

ii
xy NwBvAeAuAN ,16,066026,016                                 (6.4.5.2) 

∗−−++= i
xx

i
xx

ii
x

iiii
x

ii
xx MwDvBeBuBM ,11,016012,011  

∗−−++= i
yy

i
xx

ii
x

iiii
x

ii
yy MwDvBeBuBM ,12,026022,012  

∗−−++= i
xy

i
xx

ii
x

iiii
x

ii
xy MwDvBeBuBM ,16,066026,016  

 
where i

jkA , i
jkB  and i

jkD  (j, k = 1, 2, 6) are the extensional, coupling and the flexural rigidities. 
i
xxN , i

yyN  and i
xyN  are the in-plane stress resultants and i

xxM , i
yyM  and i

xyM  are the moment 

resultants. *i
xxN , *i

yyN  and *i
xyN  are the in-plane hygrothermal stress resultants, while *i

xxM , *i
yyM  and 

*i
xyM  are the hygrothermal moment resultants. The expression of the hygrothermal terms are 

given as 
 

∑
=
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k
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k
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k
nmn tQN

1

)()( }{ ε  and ∑
=

−
∗∗ −⋅⋅=

N

k
kk

k
m

k
nmn zzQM

1

2
1

2)()( }2/)({ ε                         (6.4.5.3) 

 
where ∗)(k

mε  is the in-plane hygrothermal strain vector in each ply, i.e., cT mmm Δ+Δ=∗ βαε  (see 
[6.4.4]). 
 
For the advanced joint types such as a scarfed or stepped lap the rigidities i

jkA , i
jkB  and i

jkD  (j, k = 
1, 2, 6) are determined as functions of the longitudinal direction of the joint within the overlap 
zone, since the adherend thicknesses are variable within the overlap. From the ‘Love-Kirchhoff’; 
assumptions, the following kinematic relations for the laminates are derived: 
 

i
x

ii zuu β+= 0 ,          i
x

i
x w,−=β ,             0=i

yβ                                   (6.4.5.4) 
 
where ui is the longitudinal displacement, ui

0 is the longitudinal displacement of the mid-plane, 
and wi is the vertical displacement of the i-th laminate. 
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6.4.6 Constitutive Relations for the Adhesive Layer 

6.4.6.1  Linear spring adhesive model 
 
The coupling between the adherends is established through the constitutive relations for the 
adhesive layer, which as a first approximation is assumed to be homogeneous, isotropic and 
linear elastic. The constitutive relations for the adhesive layer are established by use of a two-
parameter elastic foundation approach, where the adhesive layer is assumed to be composed of 
continuously distributed shear and tension/compression springs. The constitutive relations of the 
adhesive layer are suggested in accordance with Thomsen [6.4.7, 6.4.8] and Tong [6.4.9]: 
 

)( ji

a

a
axaax uu

t
GG −=⋅= γτ  

)( ji

a

a
ayaay vv

t
GG −=⋅= γτ                                             (6.4.6.1) 

)( ji

a

a
azaa ww

t
EE −=⋅= εσ  

 
where i and j are the numbers of the adherends, Ga is the shear modulus, and Ea is the elastic 
modulus of the adhesive layer.  
 

6.4.6.2  Non-linear adhesive model 
 
Most polymeric structural adhesives exhibit inelastic behavior, in the sense that plastic residual 
strains are induced even at low levels of external loading. Thus, the assumption of linear 
elasticity of the adhesive is an approximation. Analysis of non-linear adhesives and related 
solution procedures is described fully in Section 6.4.9. 
 

6.4.6.3  Equilibrium equations 
 
The equilibrium equations are derived based on equilibrium elements in- and outside the overlap 
zone for each of the considered joint types. The equilibrium equations are derived for plates in 
generalized cylindrical bending. The general equilibrium equations outside the overlap zone for 
each of the adherends (Fig. 6.4.2),  
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where i corresponds to the adherends i=1, 2, 3. 
 
In generalized cylindrical bending the stress and moment resultants are only a function of the 
longitudinal coordinate x, and the derivatives with respect to the width direction y are all equal to 
zero. The equilibrium equations derived inside the overlap zones can be divided into the 
following two groups:  
 

• Joints with one adhesive layer inside the overlap zone. 
• Joints with two adhesive layers inside the overlap zone. 

 
These two groups are further divided into joints with straight or scarfed adherends within the 
overlap. However, in the following only the equilibrium equations for joints with two straight 
adherends within the over lap will be shown, i.e. single lap joint (see Fig. 6.4.2 and Fig. 6.4.4); 
bonded  doubler and single sided stepped lap joint. For a full description of the derivation of the 
equilibrium equations for the rest of the joint types, see Mortensen [6.4.6]. 
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where t1(x) and t2(x) are the adherend thicknesses and ta is the adhesive layer thickness. For the 
single lap joint and for the bonded doubler the adherend thicknesses will remain the same in the 
entire overlap zone. For the single sided stepped lap joint, the adherend thicknesses will change 
inside the overlap zone between each step. 
 

 

Fig. 6.4.2, Schematic illustration of adhesive single lap joint with straight adherends in 
the overlap zone subjected to general loading conditions. 
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Fig. 6.4.4, Equilibrium element of adherends inside the overlap zone for joints with 
one adhesive layer and straight adherends. 

Fig. 6.4.3, Equilibrium elements of adherend outside the overlap zone. 
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6.4.6.4  The complete set of system equations 
 
From the equations derived, it is possible to form the complete set of system equations for each 
of the bonded joint configurations. Thus, combination of the constitutive and kinematic relations, 
i.e. Eqns. (6.4.5.2) and (6.4.5.4), together with the constitutive relations for the adhesive layers, 
i.e. Eqn. (6.4.5.5), and the equilibrium equations lead to a set of 8 linear coupled first-order 
ordinary differential equations describing the system behavior of each of the adherends. The total 
set of coupled first-order ordinary differential equations within the overlap zone is therefore 16 
for joints with two adherends inside the overlap zone, and 24 for the joints with 3 adherends 
inside the overlap zone. The actual derivations of the governing equations for the different 
bonded joint types are quite lengthy and described in Mortensen [6.4.6]. The governing 
equations can be expressed in the following general form within each region, i.e inside and 
outside the overlap zone: 
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where n is the number of adherends within the region considered. The values of n are between 1 
and 3 (both included) depending on the type of joint and the region considered.  

),...1,)](([ njix rr
ij =A  is a (m, m) sub-coefficient matrix for the system of governing equations, 

and { })( rr
i xB  is a (m,1) sub-matrix of non-homogeneous load terms, where m is the number of 

equations for each adherend, i.e. 8 for the cylindrical bending case and 6 for the beam case. For 
the cylindrical bending case the vector {yi} is the vector containing the fundamental variables, 
which are those quantities that appear in the natural boundary conditions at an edge x = constant 
defined by:  
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iii QMNNvwuy β=  (i = 1, 2, 3)                       (6.4.6.5) 
 
These variables will be determined through the analysis. In addition, the quantities can be 
determined from the equilibrium equations and the constitutive relations. These quantities can be 
considered as the stress and moment resultants necessary to keep the structure in a state of 
cylindrical bending. For the beam case the problem is reduced to a set of 6 coupled first-order 
ordinary differential equations for each adherend, and the solution vector containing the 
fundamental variables for each adherend for this problem is defined by: 
 

},,,{}{ i
y

i
xy

i
yy

i
yy

i
res

QMMNy i =  (i = 1, 2, 3)                               (6.4.6.6) 



 

108 

 
can be determined from the equilibrium equations and the constitutive relations. These quantities 
can be considered as the stress and moment resultants necessary to keep the structure in a state of 
cylindrical bending. 
 

6.4.6.5  The boundary conditions 
 
To solve the adhesive bonded joint problems (see Fig. 6.4.2) the boundary conditions and 
continuity conditions have to be stated. In the following the boundary conditions and continuity 
conditions are stated for a single lap joint, see Fig. 6.4.2:  
 

:, 21 LLLx +−=     prescribed : iu0  or i
xxN ,  iv0  or Error! Objects cannot be created from editing field 

codes.,  i
xβ  or i

xxM ,  iw  or i
xQ . i = 1, 2 

 
x = 0, adherend 1, continuity cross junction 
          adherend 2, 02222 ==== xxxxyxx MQNN  
 
x = L, adherend 1, 01111 ==== xxxxyxx MQNN  
          adherend 2, continuity cross junction 
 
Non-mechanical loads:  constant transverse strain e0, temperature change ΔT, moisture content Δc 
 
The boundary conditions for adherend 1 at x = L and for adherend 2 at x = 0 are derived from the 
assumption that the adherend edge is free, see Fig. 6.4.2. The boundary conditions for other joint 
types can be prescribed similarly, please see details in Mortensen [6.4.6]. 
 

6.4.6.6  Multi-segment method of integration 
 
The governing equations, together with the boundary conditions constitutes a multiple point 
boundary value problem to which no general closed-form solution is obtainable. The multiple-
point boundary value problem is therefore solved using the ‘multi-segment method of 
integration’. The method is based on a transformation of the original ‘multiple point’ boundary 
value problem into a series of initial value problems. The principle behind the method is to 
divide the original problem into a finite number of segments, where the solution within each 
segment can be accomplished by means of direct integration. Fulfillment of the boundary 
conditions, as well as fulfillment of continuity requirements across the segment junctions, is 
assured by formulating and solving a set of linear algebraic equations. For a detailed description 
of the method, see Mortensen [6.4.6]. 

6.4.7 In-plane Stresses in the Adherends 
The laminate lay-up and coordinate system is shown in Fig. 6.4.5. The in-plane stresses and 
strains of the laminated adherends can be obtained directly from CLT, in which Kirchhoff’s 
linear assumption is applied, i.e., 0== zxyz γγ  and 0=zε . This assumption leads to the linear 
relation between the displacement field of laminate and the middle-plane displacement 
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u0 ={u0, v0, w0}, i.e., 

y
wzvzyxv

x
wzuzyxu

wzyxw

∂
∂

−=

∂
∂

−=

=

0

0

0

),,(

),,(

),,(

                                                       (6.4.7.1) 

 
 
 
The in-plane strain fields in the laminate can thus be derived from the kinematics relation. They 
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where },,{ 0000
zyx εεε=ε  is strain of middle plane and },,{ xyyx κκκ=κ  is the curvature of middle-

plane. The in-plane deformation of an arbitrary point in the laminate can be obtained through 
(17) once the middle-plane deformation is known. The later can be solved from the overall 
equilibriums and constitutive equation of the laminate. 
 
Under the assumption of cylindrical bending and generalized plane strain, the middle-plane 
displacement is given in the forms as following 

)(00 xuu =                )(0
0

0 xvyev +=              )(00 xww =                          (6.4.7.3) 
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Fig. 6.4.5, Lay-up of a laminate and the coordinate system. 
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Thus, Eqn. (6.4.7.2) can be reduced to  
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The in-plane stress components of the laminated adherends can be obtained through the 
constitutive equation for each ply. Considering the hygrothermal effect, the in-plane stresses of 
the kth ply are given by 

)()(

666261

262221

161211

)( k

xy

yy

xx

xy

yy

xx

kk

xy

yy

xx

QQQ

QQQ

QQQ

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∗

∗

∗

γ

ε

ε

γ

ε

ε

τ

σ

σ

                                   (6.4.7.5) 

where ε* is the hygrothermal strain, which is given by 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∗

∗

∗

s

y

x

s

y

x

xy

yy

xx

cT

β

β

β

α

α

α

γ

ε

ε

                                                (6.4.7.6) 

 
where α and β are the coefficients of thermal and moisture expansion, respectively. 
 

6.4.8 Out-of-plane (Interlaminar) Stresses in the Adherends 
 
Even though the Classical Laminate Theory does not account for the transverse deformation, the 
interlaminate stresses can also be calculated approximately through equilibrium equations. 
Without body force, the equilibrium equations are given as 

0

0

0

=
∂

∂
+

∂
∂

+
∂

∂

=
∂

∂
+

∂
∂

+
∂

∂

=
∂

∂
+

∂
∂

+
∂

∂

xyz

zyx

zyx

xzyzzz

yzyyxy

xzxyxx

ττσ

τστ

ττσ

                                                  (6.4.8.1) 



 

111 

Under the assumption of cylindrical bending, 0=
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by assuming that they vanish at the free surfaces. One simple way to calculate the interlaminar 
stresses is to numerically differentiate the solutions obtained by Mortensen’s multi-segment 
method, which gives the numerical solutions of variables },,,,,,,{ 000

xxxxyxxx QMNNwvu β  in the 
adherends and then integrate Eqn. (6.4.8.2) numerically. However, the large oscillation is found 
in the results due to lack of continuity of the derivatives of the variables at the interface between 
segments.  
 
In order to overcome the oscillation problem, we have to do some algebra to avoid using 
numerical derivatives of the multi-segment solutions. First, expand Eqn. (6.4.7.5) and write the 
in-plane stress component σxx and τxy  as 
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Assuming the hygrothermal strains are constants in each ply, the derivatives of σxx and τxy are 
thus given as 
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Instead of taking numerical derivatives of u0, βx and v0 to get xxxxxu ,
0
, , β  and 0

,xxv , we can obtain 
their expression from the equilibrium equations of joints. For example, for the single-lap and 
bonded doubler joints, we have the following relations 
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on the overlap region and on the non-overlap region, they are 
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Note that eqns. (6.4.8.10) and (6.4.8.11) may have different forms for other joint types.  As 
hygrothermal effect is considered, the system equations given by Mortensen’s need to be 
modified, as Eqn. (6.4.5.2). Also note that the interlaminar stresses solved by the above approach 
are based on the equilibrium equations and the in-plane stresses obtained by Classical 
Lamination Theory. They do not satisfy the free edge boundary conditions, where the shear 
stresses should drop to zero. 
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6.4.9 Nonlinear Analysis of Adhesive 
 
The method developed by Mortensen to analyze the adhesively bonded composite joints has 
been implemented recently in Collier Research Corp. This method assumes cylindrical bending 
of laminated adherends and spring-like response of the adhesive layer. Good agreement has been 
reached for the adhesive shear and peel stresses between Mortensen’s elastic solution and FEA. 
We expect that good agreement will be reached between them for nonlinear solutions as the 
adhesive is treated as an elasto-plastic material. Mortensen has briefly explained the nonlinear 
formulation and solution procedure; however, it is rather difficult for engineers to implement it 
as many details have not been disclosed. This report will give the detailed procedure for 
implementation of the nonlinear analysis of bonded joints. Finally, numerical examples will be 
presented. 
 

6.4.9.1 Non-linear Material Model of the Adhesive 
Adhesives can be characterized using the updated standard test methods following two ways: one 
is the test of bulk adhesive, and the other is determination of in-situ adhesive properties in the 
bonded joints. The bulk adhesive properties are intrinsic and not influenced by the adherends. In 
the case of adhesive joints, adhesives are constraint between adherends and their properties are 
subjected to the influence of adherends and are thus more representative of real behavior. 
However, Jeandrau [6.4.12, 6.4.13] confirmed that difference between the adhesive shear 
modulus obtained in joint test is almost same as those obtained through tension-compression test 
for the bulk material (G = E/2(1+v)).  
 
The nonlinear adhesive behavior can be modeled with a measured true stress-strain curve, either 
in pure tension or in pure shear and a mathematical model that takes all stress combination into 
account. The measured stress-strain curves can be characterized by a variety of mathematical 
models for the sake of analytical and numerical analysis. In the following, we briefly describe 
some most commonly used mathematical models. 

6.4.9.1.1 Elastic-plastic model 
This model contains two parts: one is linear elastic part; another is plastic part without hardening. 
The model can be expressed as 
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where σs is the yield stress and εs is the yield strain. 

6.4.9.1.2 Bi-linear model 
This model contains also two parts: one is linear elastic part; another is plastic part with linear 
hardening. The model can be expressed as 
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where Ep is the slope of the curve of the plastic part, as shown in Fig. 6.4.6. 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.9.1.3 Power law material model 
This model represents a set of continuous curves that can be expressed as 

BA n += εσ                                                                   (6.4.9.3) 

where A, B are constants.  These constants are determined by forcing the continuity of slope and 
value at the yield point σs. The model can be handled easily in mathematics. 

6.4.9.1.4 Ramberg-Osgood model 
This model represents a set of continuous curves, with expression as 
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where n is the material constant, and n > 1. As σ is very small, the model represents quasi-linear 
elastic material. 

6.4.9.1.5 Multilinear (Polynomial) model 
The stress-strain relation of adhesives shown in Fig. 6.4.6 can be fitted using polynomials.  

 

ε 

σ 

Experimental data 

Elastic-plastic model 

Bi-linear model 1 

Fig. 6.4.6, Models for nonlinear adhesive stress-strain curves 

Bilinear model 2
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6.4.9.2 Yielding of the Adhesive 
For most ductile materials, such as metals, plastic, etc., their yield behaviors have been regarded 
to be related only to the deviatoric stress (sij). However, the yield behavior of polymeric 
structural adhesives is depended on both deviatoric and hydrostatic stress (σii) components. This 
phenomena result in the difference between the yield stresses in uniaxial tension and 
compression. Based on the observation of experiments, Gali et al. (1981) found that the bulk 
polymeric adhesive properties obtained by a uni-axial test, such as tension, compression and 
torsion, can be related to the properties of an ‘in-situ’ adhesive layer in shear by a combined 
stress law that follows a modified Von Mises criterion, which is given as 
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where s is the effective stress, J2D is the second invariant of the deviatoric stress tensor, J1 is the 
first invariant of stress tensor and n is the ratio of the compressive yield stress to the tensile yield 
stress. J2D and J1 are defined by: 
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3211 σσσ ++=J                                                                 (6.4.9.7) 
For λ = 1, Eqn. (6.4.9.1) reduces to the well-known Von Mises criterion. 
 
The effective strain e is given as 
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where v is Poisson’s ratio, I2D is the second invariant of the deviatoric strain tensor and I1 is the 
first invariant of the strain tensor. I2D and I1 are defined by 
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6.4.9.3 Stresses of Elastic Adhesive Layer 
In Mortensen’s model, the adhesive is regarded as a tension-shear spring, by which the adhesive 
transverse normal strain and in-plane shear strain are simply derived from the difference of 
displacements of the surface plies of the upper and bottom adherends. We recall the Mortensen’s 
formulation for the adhesive strains, which are given as 
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where i and j are the number of the adherends, apparently i ≠ j. The stresses in adhesive are then 
given by Hooke’s law,  

axaax G γτ =        ayaay G γτ =                 zzazz E εσ =                                   (6.4.9.12) 
where Ga and Ea shear and Young’s modulus of the adhesive. Thus, the stress and strain 
invariants defined in Eqns. (6.4.9.6), (6.4.9.7), (6.4.9.9), (6.4.9.10) can be expressed as 
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6.4.9.4 Non-linear Solution Procedure 
 
As was mentioned, the mechanical properties of the bulk adhesive are not only almost same in 
elastic range but also closely related in inelastic range to the in-situ structural adhesives. The 
non-linear adhesive properties are included by implementing an effective stress-strain 
relationship derived either experimentally from tests on bulk adhesives, or from mathematical 
models.  
 

Based on the secant modulus approach by Mortensen for the nonlinear effective stress-strain 
relationship for the adhesive, as shown in Fig. 6.4.7, the solution procedure for determining the 
stress distribution in the adhesive layer can be described by the following steps. 

1) Calculate the effective strains e1 and stresses *
1s  according to Eqn. (6.4.9.5) and (6.4.9.8) 

for each point of the adhesive (See Fig.6.4.8), using the linear elastic solution 
procedure, assuming a uniform elastic modulus E1 and for the adhesive. In this step you 
will get linear solutions for the given adhesive modulus. 

2) If the calculated effective stress *
1s  at any point in the adhesive is above the elastic limit 

(sprop), then determine the effective stress s1 at each point according to the corresponding 
effective strain e1 (calculated in step 1) using the experimental stress-strain relation in 
Fig. 6.4.7. 

3) Calculate the difference 1
*
11 sss −=Δ  between the ‘calculated’ and the ‘experimental’ 

effective stresses, and determine the specific secant-modulus E2 defined by: 

1112 )}/(1{ EssE Δ−= δ                                              (6.4.9.15) 

δ is a non-negative weight-factor, which determines the change of the modulus in each 
iteration. Note that in the Matlab code, instead of using a fix number through the 
iteration, δ is taken as 0.9/iteration empirically for each point. As iteration number 
increases δ becomes smaller, so that it ensures convergence.  

4) Re-run the procedure (steps (1) – (2)) with the elastic modulus E1, for each adhesive 
point modified as per step (3). 

5) Compare the ‘calculated’ effective stresses s* for each adhesive point with 
‘experimental’ values s obtained from the effective stress-strain curve. 

6) Repeat steps (4)-(5) until the difference between the ‘calculated’ and ‘experimental’ 
stresses (Δs) drops below (or less than) a specific fraction (|Δs /s| < 2%) of the 
experimental stress values. 
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Note that in order to increase the computation efficiency; we don’t calculate the effective stress 
and strain values at “each point”, as described in Mortensen’s thesis. Instead, we selected finite 
points along the adhesive layer. More points should be selected in the free edge regions where 
stress and strain gradients are expected to be large, as shown in Fig. 6.4.8. 
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Fig. 6.4.9 shows the flow chart for the nonlinear analysis procedure, modifying the existing 
computer code. 
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6.4.9.5 Conclusions 
 
The Elastic-plastic solutions look reasonable. The accuracy needs to be verified with FEA. The 
computation time is proportional to the number of yield points, i.e. the more yield points, the 
more time it takes. The solution may oscillate if the load becomes unreasonably large and far 
exceeds the ultimate strength of adhesives, however this becomes irrelevant as the assumption is 
that the adhesive would have failed long before reaching this load magnitude.  
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6.5 Strength Failure Theories 

6.5.1 Summary of Failure Modes and Equations 
The failure theories that are implemented in HyperSizer are listed in more detail in Volume 3.  
These theories fall into two broad categories, those that apply to the adherends, such as matrix or 
fiber cracking or delamination, and those that apply to the adhesive.    
 

 
The failure modes depicted in Fig. 6.5.1 are represented by the following equations: 

a. Equations (6.5.2.12), (6.5.2.13) 

b. Equations (6.5.2.1)-( 6.5.2.11) 

c. Equations (6.5.3.1), (6.5.3.2), 6.5.3.6),  (6.5.3.7)  

d. Equations (6.5.3.1) - (6.5.3.5), (6.5.3.8). 

e. Equations (6.5.3.6) 

f. Equations (6.5.3.4), (6.5.3.8) 

 

6.5.2 Adherend Failure 

6.5.2.1 Interlaminar delamination 
Interlaminar delamination is a typical failure mode for adhesive bonded joints. Most researchers 
believe it is caused by the weakness of composite adherends in the through thickness direction.  
There are a number of failure criteria proposed for predicting the failure of bonded joints due to 
interlaminar delamination. 

Adams [6.5.1] proposed one simple Maximum Stress criterion, which assumed that interlaminar 
failure in a composite adherend occurs when the normal tensile stress at the interface exceeds its 
ultimate strength. It is given as 

a. Adherend Fracture (far-field) b. Composite Adherend 
Interlaminar Fracture 

c. Cohesive Fracture - Shear 

d. Cohesive Fracture - Peel e. Adhesive (Bondline) Fracture-Shear f. Adhesive (Bondline) Fracture-Peel

Adherend Failure Modes 

Adhesive Failure Modes 

Fig. 6.5.1, Failure modes in adhesively bonded joints identified by Heslehurst and 
Hart-Smith 
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13 =
Z

σ                                                                   (6.5.2.1) 

where Z is the through-the-thickness tensile strength of the composite adherends. This criterion 
regards the interfacial peel stress as the major contributor to the delamination failure.  
Hoyt [6.5.4] used the following failure criterion to predict the damage initiation induced by 
interlaminar stresses in bonded doubler with [45/0/45/0/45/0/45/0/45] IM7/8552 Fabric for the 
flange and [45/-45/90/45/-45/0/-45/45/90/-45/45] for the skin. It is 
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where R is the interlaminar shear strength in the 13-plane. In general, the laminate normal tensile 
strength is less than through-the-thickness shear strength, so that in Equation (6.5.2.2) the 
contribution from the normal stress is greater than shear stress. Thus this criterion can be 
regarded as a matrix-dominated interfacial criteria. This criterion has been studied by Long 
[6.5.6], who concluded that the observed failures within the prepreg layer can be accurately 
described using Equation (6.5.2.2) for adhesively bonded ARALL-1 single and double-lap joints. 
However, Tong [6.5.10] indicated that it is less accurate as fiber breakage contributes to 
interlaminar delamination within the 0-degree surface ply near the bondline. Thus, Tong 
proposed and tested 6 interactive failure criteria considering the contribution of axial stresses 
causing fiber breakage.  
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where σ1 is axial stress of ply, Xt and Xc are the ultimate tensile and compressive strength in the 
fiber direction for each ply. A 3-D extension to Equation (6.5.2.7) that accounts for transverse 
normal and in-plane shear stress has also been implemented.  This equation is given as: 
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Camanho et al. [6.5.2] proposed the criteria for onset of delamination based on Hashin-Rotem 
work. It is given as 
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where Q is transverse shear strength of laminate in 23-plane. 
 

6.5.2.2 Matrix cracking 
In addition to delamination in the adherends, matrix cracking is also considered as one of major 
damage modes in laminated adherends. Minguet et al. [6.5.7, 6.5.8] investigated the composite 
Skin-stiffener debonding and believed that the maximum tensile stress in the matrix is the cause 
of the matrix cracking. Thus, the corresponding failure criterion is given by Krueger et al. [6.5.5] 
as 
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=principaltt  is the maximum principal stress in 

transverse plane. Yt is the transverse tensile strength of the ply. 
 

Sectional fracture 

Sectional failure is also a common failure mode in composite bonded joints. Cheuk and Tong 
[6.5.3] reported this type of failure in a series experiments on bonded doublers with T300/934 
plain woven prepregs. In general, maximum in-plane stress/strain criterion is used for this type of 
failure.  
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111 =
tX
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where ult
xF  and ult

xε  are the maximum tensile stress and strain of the adherend.  

6.5.3 Adhesive Failure (cohesive and adhesive/adherend interface failure) 
Adhesives are more susceptible to failure due to tensile strain than pure shear and compression. 
For some adhesives, the nonlinear behavior dominates and strain to failure can exceed 100%. 
Thus, for the cohesive failure of ductile adhesive, the maximum strain criterion is given as 
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where .eqvε  is Von Mises equivalent strain in the adhesive. Alternatively, Tong [6.5.11] also 
proposed a simple formulation to calculate the strain energy density in the adhesive, and used it 
for the adhesive failure criteria. It is given as 
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where α and β are real constants, and UIC and UIIC are the critical bond strain energy density of 
pure peel and pure shear, respectively. 

 

Another failure criterion for the adhesive layer considering adhesive spew fillet is the maximum 
principal stress. As shown by Adams [6.5.1], the initial damage in the adhesive spew fillet is 
caused by the maximum principal stress, thus 
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                                                     (6.5.3.3) 

where Fmax is the tensile strength of the bulk adhesive. 

 

For general decohesion and debonding failure, an empirical interactive failure criterion was 
proposed by Tong and Steven [6.5.12]. 
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where Fpeel and Fshear are the bondline peel and shear strength, which can be measured in a tensile 
shear experiment.  

The shear dominant failure criterion for adhesives includes maximum shear stress, 
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and maximum shear strain 
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where ult
shearγ  is the ultimate shear strain of the adhesive. Likewise, the peel dominant failure 

criterion for the adhesive is, 
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6.5.4 Fracture Mechanics Based Failure Criteria 
The methods presented so far have dealt primarily with damage initiation, rather than with 
ultimate failure, which is much more difficult to predict.  In order to predict ultimate failure, we 
propose to implement Fracture Mechanics based failure criteria.  This approach recognizes that 
all materials contain flaws and that adhesive joints usually fail by the initiation (or sub critical 
growth) and propagation of flaws of a critical size within the adhesive layer. Fracture mechanics 
attempts to link these processes with predictions of the joint strength under various loading 
conditions by analyzing the stress state within the joint, particularly in the vicinity of the critical 
flaw and comparing this with material properties that describe the tendency of the cracks to 
propagate. The two main approaches are the energy method and the stress intensity factor 
method developed.  
 

Prediction for damage growth is difficult because the initial crack size, location and growth path 
can not be determined by simple analysis. According to [6.5.4], the selection of an initial crack 
size is based on many factors, including manufacturing acceptance and/or damage tolerance 
criteria for the specific structure. The authors also indicated that in the analysis the location of 
the crack interface is specified a–priori based on the damage initiation site and experience with 
typical crack paths in composite structures. The crack interfaces are modeled along the direction 
of anticipated crack growth. The same strategy is also used by Cvitkovich, et al. [6.5.14] 

 
Once the initial crack size, location, and path are determined, the analyses are relatively easy. 
The damage growth rate under the monotonic or cyclic loads can be calculated by using the 
energy criterion (strain energy release rate) and so the fatigue life can be determined. The 
technique used in the paper to calculate the Strain Energy Release Rate (SERR) is called Virtual 
Crack Closure Technique (VCCT), which can be easily implemented together with finite element 
analysis, but is not suitable for analytical methods. 
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Analytical methods calculating the SERR of cracks in bonded joints or at bi-material interfaces 
can be found in the literature [6.5.15-6.5.18]. These methods will be implemented into HS-
BondJo in future development.  
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6.6 Issues with Predicting Peak Bonded Joint Interlaminar Stresses 

6.6.1 Disparity in Stress Results from Different Analysis Methods 
At first glance, it appears that HyperSizer-BondJo over-predicts peak stresses relative to the 
finite element analysis in the area of the singularity at the reentrant corner (see Fig. 6.6.1).   
There are several reasons for this disparity and because failure prediction is only slightly 
dependent on the actual peak stress value, these differences may not be a concern.   
 

First of all, most finite 
element analyses typically 
have trouble converging in 
the vicinity of singularities.   
In our comparison between 
BondJo and ANSYS solid 
model FEA, consistently 
higher peak stresses were 
seen in the BondJo results 
over the FEA peak stresses.  
This is thought to be a 
problem of mesh 
refinement around the 
reentrant corner.  As the 
mesh is further refined, 
however, numerical 
problems can begin to 
occur.  Obtaining good 
results at the singularity 
with “h” type FEA is 
difficult. 

 
 
In the Stresscheck solid FEA model used for BondJo verification, instead of trying to resolve the 
singularity itself, a small circular region surrounding the reentrant corner was defined in which 
the results are completely ignored (see Fig. 6.6.2).  This is done because it is assumed that results 
in this region are “polluted”.  In this case, 
the actual peak stress, which occurs 
exactly at the free edge, is not known.     
 
Second, when post-processing the FEA 
results, there is a potential disparity 
among the FEA results themselves.  The 
peak stress can depend on the number of 
points chosen for plotting.  This is shown 
in Fig. 6.6.3.  As the number of plotting 
points chosen from the Stresscheck FEA 
increases from 75 to 500 points, the 

Adherend 1 
First Ply 

“Polluted” region 
where results 
were ignored 

Adhesive 
Layer 

Fig. 6.6.2, In our Stresscheck verification example, a small 
area around the reentrant corner was defined inside of 

which the FEA results are ignored. 
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Fig. 6.6.1, Differences in peak interlaminar stress predictions at 
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reported peak stress increases 60% from 2.76 to 4.37 psi.  Based on this trend, perhaps even 500 
points is not enough and adding more points would result in an even higher peak stress.   For this 
same case BondJo reports a peak stress of 5.76 psi and a stress of 5.29 psi at only ½ ply 
thickness away (the assumed characteristic distance), both of which are higher than those values 
returned by the FEA.    In reality, the peak stress most likely lies somewhere in between the 
BondJo results and those of the FEA. 

 
Although the peak stresses 
reported by the two 
methods can be different, 
the shape of the stress 
curve and the integrated 
effect of those stresses are 
very similar.  In the next 
section, several different 
methods of predicting 
failure are discussed and it 
is put forth that the actual 
value of the peak stress 
may not be critical. 
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τxy 

a) characteristic 
distance 

b) area under 
the curve

c) slope of the 
curve

d) bond line 
length 

Fig. 6.6.4, Rather than relying solely on the peak stresses for failure prediction, 
four methods are identified for predicting failure in bonded joints based on stresses 
near the reentrant corner.  HyperSizer-BondJo uses the bond-line length method, 

which evaluates failure criteria using stresses at all points near the free edge 
outside of a characteristic distance.  The recommended “rule-of-thumb” distance is 

½ ply thickness or 0.0025". 

 

6.6.2 Uncertainty in Predicting Failure at the Reentrant Corner 
It was established in the previous section that the peak interlaminar and peel stresses for bonded 
joints, which generally occur at the singularity of the reentrant corner, are hard to predict and 
different tools and approaches will generally give different values for these peak stresses.   In 
real-world applications, however, this peak stress is not what will drive a joint to ultimate failure.    
Imperfections, spew fillets, non-linear material properties, etc. will all drive the solution away 
from the extreme stress concentration, and even if a failure such as a small crack does occur 
exactly at the free edge, that crack may be stable and not experience growth that would lead to 
ultimate failure of the joint.   
 
In practice, there are several methods of using predicted stress fields to predict ultimate failure of 
the joint.  Four of these are shown in Fig. 6.6.4.  The first of these (Fig. 6.6.4a) simply evaluates 
a set of failure criteria using the stress field at some prescribed or ‘characteristic’ distance away 
from the reentrant corner.  This method is simple, however, determining the appropriate distance 

to use is not straightforward and may be dependent on 
the material, the ply angle sequence, and the joint 
geometry.  To be valid, this distance must correlated 
to test data.   
 
Methods b) and c) are similar in that they look at the 
integrated effect of the stress field, rather than the 
stress exactly at the free edge.  Using methods such as 
these would presumably yield similar failure 
predictions regardless of which tool was used for 
stress prediction because they depend on the shape of 
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the stress curve rather than stress at a single location.   Just as with the characteristic distance 
method, however, failure methods that are based on either of these methods must be calibrated to 
test data to be useful.   
 
The “bond line length” method evaluates stress at all points within a certain distance of the 
reentrant corner, but still outside some characteristic distance.  This method is very similar to the 
characteristic distance method.  The difference is that instead of evaluating failure criteria at a 
single point, the failure criteria are evaluated throughout the adherends and adhesive at many 
points to be sure that the critical stress combination is found.   Just as with the other methods, 
however, the value of the characteristic distance is not easy to determine, and must be tied to test 
data for a particular material system, layup and geometry.    This is the method that we have 
implemented for failure prediction in HyperSizer-BondJo and our recommended characteristic 
distance, in the abscense of any comprehensive test data, is approximately ½ ply thickness, or 
about 0.0025". 
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6.7 HyperSizer Example: Composite Bonded Joint 
The developed Bonded Joint Analysis software is now an integral part of both the HyperSizer 
Basic and Pro software packages and will be commercially available with the production release 
of HyperSizer Version 4.4 (expected in summer of 2005). 

6.7.1 Software Operation 
Wherever possible, the incorporation of BondJo into HyperSizer made use of the existing 
infrastructure for material properties, laminates, dimensions, optimization parameters, etc.  In 
most cases, experienced HyperSizer users will see few differences between the way structural 
materials and dimensions are specified today and those that are required for BondJo analysis.   

 
The example described below demonstrates setting up a problem for BondJo analysis.  First the 
laminate and material properties are specified for the top facesheet (in BondJo, Adherend 1). 

 
Fig. 6.7.2, Adherend 1 (top facesheet) laminate specification 

Ny 
Adherend 1 

Adherend 2 

L1 L2 

Adhesive 

(Bonded Combo) (Open Span) 

Fig. 6.7.1, Configuration for bonded joint 
example  

Note: All geometry, load 
specifications, and results 
for this example are 
reported in the HyperSizer 
panel coordinate system.  
See Section 6.11 for 
details.
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The next step is to specify a laminate for the stiffener flange (BondJo: Adherend 2).   In the 
current version of HyperSizer, the adhesive material and adhesive thickness for the bonded joint 
are considered to be part of the flange (as shown as the “blue” isotropic ply in Figure 2).  This 
means that optimum combinations of adherends and adhesive are determined by creating many 
unique laminates. Therefore there there is no convenient way to optimize the adhesive material 
or thickness separately from the flange material and thickness at this time.  In a future version of 
HyperSizer, the adhesive material and thickness will become separate variables and the 
optimization will be more general and convenient. 

 
 
After specifying materials and geometry, the joint can be viewed to-scale through HyperSizer’s 
graphics form. 

 
Fig. 6.7.4, Bonded joint geometry shown in HyperSizer graphics 

 

Fig. 6.7.3, Flange laminate (adherend 2) and adhesive specification 
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General uniaxial or biaxial forces and moments with or without shear are then applied to the joint 
through the HyperSizer FBD tab.  Loads can be entered either as typed-in forces or moments 
(lb/in or lb-in/in), specified strains or curvatures, or if this joint is part of a global FEM, the 
forces will be imported automatically from the finite element analysis. In addition to general 
loading, general constrained boundary conditions can be applied.  

 
Several joint specific options have not yet been included into the main HyperSizer GUI and are 
handled through a special set of data called “backdoor data” which are entered through a 
temporary HyperSizer interface.  Backdoor data is that data which is required for a HyperSizer 
capability that has not yet been implemented through the main GUI, but is stored and maintained 
in the database.  

 
The backdoor data includes items like the number of “segments” into which each domain is 
divided for analysis, the number of y and z points through each segment and through each ply 
respectively at which stresses are calculated, the characteristic distance for margin of safety 
calculation, the y locations at which through-thickness stress plots are to be generated, and the z 
locations at which stress plots along y are calculated. 
 
After the problem has been fully defined, the user simply presses the analyze button and after a 
few seconds the software will automatically generate over 40 plots (depending on the plots 
specified in the backdoor data) that fully describe the displacement, forces, in- and out-of-plane 
stresses in the bonded joint.  The run-time depends on the number of segments and y and z points 

 

Fig. 6.7.5, Joint loads entered on HyperSizer’s FBD tab  

Fig. 6.7.6, Joint parameters entered as “backdoor data”  
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specified in the backdoor, but are usually on the order of 1 second or less on a typical 2.8 GHz 
workstation. With most of the time spent initializing the plots. The numerical runtime is on the 
order of 1/40th second and this is what is relevant for optimizing.  This means that this analysis 
will lend itself very well to rapid optimization that considers many different joint configurations. 

6.7.2 Analysis Result Screenshots 
Adherend Global Results 

Note: Red Lines are Centerline Adherend 1, Blue Lines are Centerline Adherend 2 
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Adherend Global Results (cont.) 
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Adhesive Midplane Stresses 
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Adherend Through-Thickness Stress Plots (X = 0.5”) 
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Adherend Through-Thickness Stress Plots (X = 0.89”) 
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Adherend Through-Thickness Stress Plots (X = 0.9575”) 
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Adherend 1 Midplane Stress Plots 
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Adherend 2 Midplane Stress Plots 
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The data describing each of these plots are easily exported from HyperSizer into comma 
delimited files for plotting in Microsoft Excel or any other plotting package. 
 
In addition to the detailed displacement, force and stress plots available, HyperSizer also 
automatically calculates margins of safety and reports these on the Failure tab as shown in Fig. 
6.7.7. (Note, this screenshot does not correspond to the same problem as the above screenshots)  
As described in Volume 3, HyperSizer automatically calculates 13 different margins (fracture 
and delamination) for the adherends and 6 margins for the  adhesive. 

 

6.7.3 Limitations of Capability 
The primary limitation of the current implementation of HyperSizer-BondJo, as mentioned 
earlier, is the adhesive material and thickness are currently tied to the material and thickness of 
adherend 2. This makes automatic optimization of the adhesive inconvient, however this is 
considered to be a temporary limitation.   In a future HyperSizer release, a database and interface 
will be provided that will allow for continuous variable optimization of the bonded joint 
geometry (i.e. overlap length, adhesive thickness) and adhesive material.  
 
The second limitation is that only the bonded doubler joint type is commercially available. There 
is no single lap joint or any other type of lap joint represented in the commercial software at this 
time.  An internal single lap joint code has been completed and V&V and the next step is to 
integrate it into the commercial HyperSizer. Another future development will be to identify these 
joints on a full airframe finite element model and automatically pull loads from the FEA in order 
to analyze and size them.   
 
A third limitation that is believed to be minor is that, while HyperSizer will accept any general 
combination of loadings and deformations on a stiffened panel, the cylindrical formulation of 
Bondjo does not accept prescribed applied moments or curvatures in the stiffener direction or in 
the bending-twisting axis.  

Fig. 6.7.7, Composite Joint Margins of safety reported on the failure tab 
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6.8   Future Development 

6.8.1 Inclusion of deformable shear theory in the adherend  
Classical lamination theory, which is currently used in BondJo, does not account for the actual 
transverse deformation of adherends, which is pronounced in laminates with low transverse shear 
moduli. Neglecting transverse shear of adherends will induce errors to interlaminar stresses 
calculation and even for the adhesive stresses. This is the only major potential weakness of 
BondJo’s current methodology.  First order shear deformable theory would be a relatively easy 
extension to BondJo that could address this shortcoming. 
 
First order shear deformable theory for the joints, including the kinematics and constitutive 
equations are given in Whitney [6.8.1].  This theory postulates that the displacement field of the 
adherend is a linear function of the z coordinate, as shown by the following equations: 
 

Error! Objects cannot be created from editing field codes. 
 
and the transverse strains are then found by: 
 

Error! Objects cannot be created from editing field codes. 
 
where it can be seen that the transverse strains are linear functions of the z coordinate.  Including 
these effects in BondJo would mean incorporating these equations into the adherend constitutive 
equations. 
 Although CLT also assumes the displacements (mainly u and v) are linear functions of z 
coordinates, it postulates that planar cross sections of the plate remain plane (Kirchoff-Love 
Hypothesis) and perpendicular to the neutral axis after deformation. Thus, it leads the deflection 
w to be constant through the z direction and γyz, γzx and εzz to be zeros. However, the First-Order 
Shear Deformable Theory does not guarantee that the cross section remains perpendicular to the 
neutral axis after deformation, but assumes that w is a linear function of z such that out-of-plane 
strains could develop, as can be seen from above equations. 
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Fig. 6.8.1 illustrates the strategy of including the first-order shear deformable theory for the 
adherends.  The displacements shown in the figure include u, v and w, which are all linear 
functions of z direction.   It should be noted that displacement of adherends varies in x-z plane. 

     Adherend  2 

Adherend 1 

adherend 2

adherend  1

Fig. 6.8.1, Introducing first-order shear deformable theory into bonded joint analysis 

   [zψx (x, y), zψy (x, y), zφx (x, y)]  +  [u0, v0, w0]       =   [u, v, w] 

     adhesive 
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6.8.2 Inclusion of geometric non-linearity in joint analysis.  
One effect that must be considered whenever analyzing bonded joints is that of geometric non-
linearity.  This effect is not presently considered in the BondJo formulation, however, for 
bonded doubler joints, with normal material/geometry configurations, predicted failure 
loads in the joint occur at much lower strain/curvature levels than where the panel 
becomes geometrically non-linear.   
 

 
 
As an example, consider the validation case presented in Section 6.10.2 that compares 
HyperSizer-BondJo failure predictions to a series of tests from Cheuk and Tong.  In this 
configuration, the total length of the joint is 140 mm.   The total vertical deformation (δ) of the 
joint at the predicted failure load of 13 kN is only about 1.2 mm.   This only amounts to a 
deflection of only 0.8%, which is well within the acceptable 2% limit for linear “small deflection 
“analysis”. 
 

 
 
 

Fig. 6.8.2, This is typical linear deformation of a bonded doubler joint. HyperSizer BondJo 
captures this response very accurately. Because the linear deformation is small, non-linear 

geometric deformation at loads levels where failure can occur is not a significant effect. 

δ 

 z 

x 

3.44 

45 95

T300/934 plain woven [0]8s

T300/934 plain woven [0]8s 

Fig. 6.8.3, Schematic of bonded doubler test specimens examined by Cheuk and Tong.  

 Adherend 13.44 

0.16 

Width = 12.2 

Adherend 2 a 

All dimensions in mm. 
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As another example, Fig. 6.8.5, from reference [6.8.5, Fig. 8], shows that for a bonded doubler 
joint non-linear geometric effects are not significant.  

 
 
 

Fig. 6.8.5, This is a comparison of finite element analysis results to the experimental result of axial 
strain vs load for bonded doubler specimens. It shows that for both plane stress and plane strain, 

geometric nonlinearity does not generate significant differences in response.  

 

Fig. 6.8.4, Vertical deflection, w, of the Cheuk and Tong validation problem at the predicted 
failure load.  The maximum deflection of about 1.2 mm is only 0.8% of the total bond length, 

well within the limits of linear analysis. 
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While for a bonded doubler joint, non-linear geometry effects may not be substantial, in the 
single lap joint this may not be true and geometric non-linear may become more important 

 
To model the geometric nonlinearity in the adherends, one needs to modify the kinematics 
equation with infinitesimal strain to account for large rotation. The strain in the adherends with 
large rotation is given by  
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An alternative to modeling geometric nonlinearity in the single-lap joints is to use a simplified 
engineering based approach.  The core idea is to solve the fields in the over-lap region under the 
equivalent forces (moment) from the deformed body, as shown in Fig. 6.8.6.  The moment at the 
edge of overlap region can be obtained with the formula tTkM ′•= 2/1  [6.8.4] where k is called 
the moment reduction factor and is related to the adherend flexibility.  Hart-smith [6.8.2], Goland 
and Reissner [6.8.3] provide empirical relationships for k.   
 
The shear force Q can also be expressed as  

 

]2)[(
2
1 MTt
c

Q −+= η       (6.8.2.2) 

where c is the overlap length, t is adherend thickness and η is the adhesive thickness. Once the 
edge loads are determined, the solution can be obtained in the over-lap region. Even though the 
above formulae were developed for isotropic adherends with equal thicknesses, the method could 
be easily extended to more general cases. The key of this engineering method is to find the 
relationship of the overlap region edge load to the flexibility of the adherend. 

 

Fig. 6.8.6, An engineering method to model the geometric nonlinearity in the single lap joint. 
The core idea is to solve the fields in the over-lap region under the equivalent forces 

(moment) from the deformed body. 

T 

α 

T’ 

M 

Q 

T’ 

M 

Q 
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6.8.3 Replace Spring Model with Higher Order Theory Continuum Model 
HyperSizer-BondJo uses a spring model for the adhesive layer. This model could capture the 
stress concentration near the free edge, but could not satisfy the boundary condition at the free 
edge exactly (that is, shear stress drops to zero), nor give the through-the-thickness variation of 
adhesive stresses. 
 

 
In contrast, a high-order theory approach (HOTA) could satisfy the free edge boundary condition 
and give the through-the-thickness variation of adhesive stresses, as shown in Fig. 6.8.7(a) and 
(b).  
 
Though “academically” appealing to show that peel and transverse shear stresses reduce to zero 
after reaching a peak value, this is expected to be a relatively insignificant effect to capture.  The 
key reason is described in Section 6.6 in that the failure prediction is generally performed using 
peel or transverse stress fields not exactly at the free edge, but some characteristic distance away 
from the free edge. 

Fig. 6.8.7, Normalized adhesive layer (a) peel stresses,  (b)interlaminar shear stress, using the 
spring model approach (SMA), the high-order theory approach (HOTA, τax=0 at x=0, L) and the 

finite element method (FEM) for a single lap joint with no spew-fillet. 

 

 

SMA – Spring Model 
Approach 
 
HOTA – High-order 
theory Approach 
 
FEA – Finite element 
Analysis 
 
Note: Note that in the 
symbol HOTAT, the 
subscript “T” represents 
“upper interface” of 
adhesive layer, “B” 
represents “lower 
interface” of adhesive 
layer. 

(a) 

(b) 
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6.8.4 Micromechanics Analysis of Bonded Joints 
 

 
 
A recent addition to the commercial HyperSizer software is the integration of a NASA developed 
micromechanics code called MAC/GMC (Micro Analysis Code/General Method of Cells).  
MAC/GMC has the ability to analyze a “repeating unit cell” that can represent a single 
fiber/matrix volume (or multiple fiber/matrix volumes), which is assumed to continuously repeat 
in all directions to make up the composite laminate.  The process is illustrated in Fig. 6.8.8 where 
stiffened panel forces are resolved into laminate forces and then into individual ply stresses.  
Without BondJo, HyperSizer is able to resolve the in-plane stresses (σ11, σ22, τ12) and pass them 
to the micromechanics analysis, however with the addition of BondJo, HyperSizer can now 
resolve not only the in-plane stresses, but also the out-of-plane stresses (shown with red circles) 
and send them along with in-plane stresses to MAC/GMC so that a full fiber/matrix analysis can 
be performed.   

 

 

 

Fig. 6.8.8, Forces on the stiffened panel (a) are resolved into laminate level forces (b) which are in-
turn resolved into individual ply stresses (c) using lamination theory imbedded in HyperSizer-

BondJo.  With BondJo, HyperSizer can now send not only in-plane stresses, but also out-of-plane 
stresses (shown in red circles) to a micromechanics analysis ('d') of a single fiber/matrix subcell.  

a) 

b) 

c) 

d) 
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6.9 Verification Examples 

6.9.1 Bonded Doubler Verification – Delale and Erdogan, monolithic 
The first set of verification examples compare results from 
HyperSizer-BondJo with a series of results from Delale and 
Erdogan [6.9.1].   On the left side of configuration, symmetric 
boundary conditions are prescribed. Two loadings and two 
material systems were studied.  Results for the first of these 
material systems using aluminum adherends, are presented here.   
Results for the second material system, which includes a homogeneous orthotropic material, are 
presented in Volume 3, Section 6.  The first loading condition applies uniaxial tension and the 
second applies a moment to the right edge. A full description of this problem and the results for 
all loading/material combinations is given in Volume 3, Section 6. 

 
 
Note that the Delale and Erdogan plate solution, shown in Fig. 6.9.2 and 6.9.3, is not general 
(cannot handle composite materials nor general loadings and boundary conditions) as does the 
implemented approach in HyperSizer. Also note that the method implemented in HyperSizer 
tends to over predict the dip at 0.8 < X/L < 0.9. Though this appears to be a concern, so far, it has 
been insignificant in both the prediction of free edge peel and interlaminar stresses that are used 
in adhesive failure predictions and for failure predictions of delamination and fracture for 
laminates. It has also been determined that this dip does not effect strain energy release rates 
calculations using the virtual crack closure technique.  

 

z 

x 

t2 

L=12.7mm 

Adherend 1 

Adherend 2 

ta

Fig. 6.9.1, Configuration of bonded doubler joint example 

t1 

Adherend 1: Aluminum, monolithic, t1 = 1.524 mm 
Adherend 2: Aluminum, monolithic, t2 = 0.762 mm 
Adhesive: Epoxy, ta = 0.1016 mm 

Nx = 1 (N/mm) 
- or - 

Mx = 1 (N mm/mm) 

L2=12.7mm

Note: This example uses the 
typical academic sign 
convention.  See Section 
6.11 for details. 
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Results 
A sampling of the results comparing HyperSizer-BondJo results to those from a solid model FEA 
for the aluminum-aluminum joint configuration is shown in the following Figs. 6.9.2 and 6.9.3.  
More comprehensive results for these problems are shown in Volume 3, Section 6. 
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Fig. 6.9.2, Comparisons for the applied tensile load case between BondJo, Ansys 

3D solid FEA, Delale and Erdogan’s analytical plate theory and independent 
FEA performed by Delale and Erdogan. 
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Fig. 6.9.3, Comparisons for the applied moment case between BondJo, Ansys 3D 
solid FEA, Delale and Erdogan’s analytical plate theory and independent FEA 

performed by Delale and Erdogan. 
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Fig. 6.9.5, Through-the-thickness distribution of out-of-plane (interlaminar) stresses in the 
adherends of bonded doubler (aluminum-aluminum) subjected to unixaial tension  

(Mxx = 1 N-mm/mm) 

Out-of-plane Stresses at x/L = 0.89 Out-of-plane Stresses at x/L = 0.9575 

  

Fig. 6.9.4, Through-the-thickness distribution of out-of-plane (interlaminar) stresses in the 
adherends of bonded doubler (aluminum-aluminum) subjected to uniaxial tension (Nxx = 1 N/mm) 

Out-of-plane Stresses at x/L = 0.89 Out-of-plane Stresses at x/L = 0.9575 

Black = Peel Stress (σz) 
Red = Interlaminar Shear (τxy) 
Blue = Interlaminar Shear (τyz) 

Solid Line = HyperSizer-BondJo 
Dashed Line = ANSYS Solid FEA 
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6.9.2 Bonded Doubler Verification – StressCheck FEA, [0/±45/90] Laminate 
 
The problem that was run in HyperSizer-BondJo and compared 
to Stresscheck uses laminated adherends with off axis plies 
subjected first to tensile and then to bending moment loading.  
To determine through-the-thickness distribution of stresses in 
the FEA required explicit modeling of each ply in the FEA. 
The schematic representation of the bonded doubler problem is shown in Fig. 6.9.6. Adherend 1 
was made of boron/epoxy prepreg tape and has a [45/-45/0/90/0/90/45/-45/0]s lay-up with 
nominal thickness of 0.005 in. Adherend 2 was also made of boron/epoxy prepreg tape, with lay-
up of [0/90/45/-45/90/0], and nominal thickness of 0.005 in. The thickness of the adhesive layer 
is 0.004 in.   These results are discussed more fully in Volume 3, Section 7. 

 

 
 
The comparison between HyperSizer-BondJo and StressCheck shows that most of the results 
match very well, including adhesive interlaminar shear and peel stresses,  adherend middle-plane 
displacement, and stresses in the adherends. Adhesive peel stress match generally well between 
BondJo and StressCheck, except in the non-critical “trough” region, where peel stress becomes 
negative and HyperSizer-BondJo tends to overpredict the stress. The adherend out-of-plane 
stresses components match well also, except again in the peel stress at the “trough” region.  
 
 

Adherend 1: Boron/epoxy [45/-45/0/90/0/90/45/-45/0]s, 18 plies of prepreg tape, t=0.005" 
Adherend 2: Boron/epoxy [0/90/45/-45/90/0], 6 plies of prepreg tape, t=0.005" 
Adhesive: Epoxy, ta = 0.004 in.

Fig. 6.9.6, HyperSizer-BondJo to Stresscheck verification problem  

 

z 

x 

1.0” 1.181”

Adherend 1 

Adherend 2 

0.004”

0.09” 

0.03” 

Note: This example assumes 
the typical academic sign 
convention.  See Section 
6.11 for details. 
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Fig. 6.9.8, Adhesive stress validation results between HyperSizer-BondJo 
and Stresscheck for panel applied moment.  

Trough region where 
BondJo tends to over-
predict stresses 
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Fig. 6.9.7, Adhesive stress validation results between HyperSizer-BondJo 
and Stresscheck for panel applied axial force  

Adhesive stresses 

Stress 
(psi) 

X (in.) 

Adhesive stresses 

Stress 
(psi) 

X (in.) 

Black = Peel Stress (σz) 
Red = Interlaminar Shear (τyz) 
Blue = Interlaminar Shear (τxz) 

Solid Line = HyperSizer-BondJo 
Dashed Line = Stresscheck FEA 
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Fig. 6.9.9, Through-thickness stress result comparison between HyperSizer-
BondJo and Stresscheck for panel applied axial force  

Through Thickness out-of-plane Stresses (X=0.89)
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Fig. 6.9.10, Through-thickness stress result comparison between 
HyperSizer-BondJo and Stresscheck for panel applied moment 

Through-thickness out-of-plane stresses (x/L=0.89) 

Through-thickness out-of-plane stresses (x/L=0.89) 

Z (in.) 

Z (in.) 

Stress (psi) 

Stress (psi) 

Black = Peel Stress (σz) 
Red = Interlaminar Shear (τyz) 
Blue = Interlaminar Shear (τxz) 

Solid Line = HyperSizer-BondJo 
Dashed Line = Stresscheck FEA 
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6.9.3 Bonded Doubler Verification – Mortensen [0/30/60] Laminate  
 
The next problem is a pure verification that the theory 
described in Section 6.4 was implemented correctly and 
consistently.  The problem was presented in Mortensen [6.9.2] 
and because BondJo’s theoretical development originated from 
that work, it is not surprising that our results match those in 
[6.9.2] exactly.   A full description of this problem is given in Volume 3, Section 6. 
 

 

 

z 

x 

.762 mm 

25.4 mm 30 mm

Adherend 1 

Adherend 2 

ta

Fig. 6.9.11, Configuration of Mortenson’s composite bonded doubler 
joint example example 

2.29 mm

Adherend 1: Graphite/epoxy, [60/30/0/60/30/0/60/30/0]2, 18 plies 
Adherend 2: Graphite/Epoxy, [0o/30o/60o/0o/30o/60o], 6 plies 
Adhesive: Epoxy, ta = 0.1016 mm 

Note: This example 
assumes the typical 
academic sign convention.  
See Section 6.11 for details. 
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Results 
A sampling of the results comparing HyperSizer-BondJo results to those of Mortensen are shown 
below.  More comprehensive results for this problem are shown in Volume 3. 
 
 
 
 
 

 
 
 

 

Fig. 6.9.13, Adherend bending moment comparison between 
HyperSizer-BondJo and Mortensen 

a) HyperSizer-BondJo Result b) Mortensen Result 

 

 

Fig. 6.9.12, Adherend transverse displacement comparison between 
HyperSizer-BondJo and Mortensen 

a) HyperSizer-BondJo Result b) Mortensen Result 

 

Red = Adherend 1 
Black = Adherend 2 
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Fig. 6.9.14, Out-of-plane adhesive stress comparison between 
HyperSizer-BondJo and Mortensen 

a) HyperSizer-BondJo Result b) Mortensen Result 

 

Black = Peel Stress (σz) 
Red = Interlaminar Shear (τxy) 
Blue = Interlaminar Shear (τyz) 
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6.9.4 Single Lap Verification – Mortenson, [0/30/60] Laminate 
A second verification problem, this one for a single lap joint, 
was chosen from Mortensen [6.9.2] to verify the theory 
described in Section 6.4 was implemented correctly and 
consistently. Most of the HyperSizer-BondJo results matched 
exactly with Mortensen’s, however, some initially showed 
large discrepancies with the author’s results. Upon contacting 
the author, we learned that there were errors in the author’s original code and the HyperSizer-
BondJo results are correct [6.9.3]. The corrected result supplied by the author match HyperSizer-
BondJo’s results exactly. The configuration of the single-lap joint is illustrated in Fig. 6.9.15. 

 
 

Fig. 6.9.15, Mortensen’s example for single lap joints.  The joint is simply supported at both ends 
(clamped in the width direction) t1 = t2 =1.5 mm, ta = 0.05 mm, L1=L2=30 mm, L = 20 mm. 

Adherend 1: Graphite/Epoxy, [0/30/60]4, 12 plies, t1 = 1.5mm 
Adherend 2: Graphite/Epoxy, [60/30/0]4, 12 plies, t2 = 1.5mm 
Adhesive: Epoxy AY103, ta = 0.05 mm 
Lengths:   L1 = L2 = 30 mm;  L = 20 mm

Note: This example assumes 
the typical academic sign 
convention.  See Section 
6.11 for details. 
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BondJo Mortenson [6.9.2] 

 
a)   

b) this corrected plot was obtained from the 
author of [6.4.6] and is different from results 

in the original source [6.9.3] 

 
c) 

 
d) 

 
e) f) 

 
Fig. 6.9.16, Single-lap joint results comparison between HyperSizer-BondJo 

and Mortensen 
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BondJo Mortenson 

g) h) 

i) 

 
j) 

k)  
l) 

 
 Fig. 6.9.16, Single-lap joint results comparison between HyperSizer-BondJo 

and Mortensen 
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6.10 Validation examples 

6.10.1 Approach Summary 
For bonded doublers, only two examples were found in the literature that contained sufficient 
problem setup and test details to allow meaningful comparisons.  These two examples are from 
Tong [6.10.1] and NASA [6.10.2].   A validation of the HyperSizer-BondJo single lap joint 
implementation is also presented based on a series of tests from Tong [6.10.3]. 
 
These validation cases are modeled using HyperSizer-BondJo and the predicted failure loads are 
compared to the published test data. Neither test data strain gage readings nor computed stress 
values were disclosed in the literature, so HyperSizer-Bondjo computed interlaminar shear and 
peel stress values could not be compared to outside sources. 
 

Table 6.10.1, Summary of bonded doubler validation examples 
 Tong  problem [6.10.1] 

 
NASA problem [6.10.2] 

Joint type Bonded doubler without steps Stepped (tapered) bonded doubler 
 
Adherends 
 

T300/934 plain woven fabric Facesheet:  IM7/8552 Prepreg tape 
[45/-45/0/-45/45/90/90/-45/45/0/45/-45] 
Doubler: IM7/8552 plain woven fabric, 
[45/0/45/0/45/0/45/0/45]  

 
Adhesive  

Linear elastic (FM300k) and 
non-linear material properties  

Linear elastic (Grade 5 FM300) and non-
linear material properties 

 
Failure modes 
 

Sectional fracture (ultimate 
failure),  
(failure modes are usually 
associated with the character of 
adherend material, in this case 
matrix cracking is NA) 

Matrix cracking in the facesheet prepreg 
tape (damage initiation) (failure modes 
are usually associated with the character 
of adherend material, in this case a tape 
would exhibit matrix cracking) 

 
Tested failure 
load 

18.62 kN (ultimate longitudinal 
tensile load) 

Values scatters, the average is 17.8 kN.  
(longitudinal tensile load for damage 
initiation) 

 
Predicted failure 
load 

14 kN (damage initiation load), 
based on non-linear adhesive 
and zero characteristic distance. 

24.4 kN (damage initiation load) based 
on linear elastic adhesive and zero 
characteristic distance. 

 
Failure criterion 

Max principal stress (σ11 is 
dominant) 

Max principal stress in the transverse 
plane to the fiber direction, σ22 AND σ33 

 
Possible methods 
for improvement 

1. characteristic distance is not 
likely to make a difference we 
believe because the dominant 
σ11 does not vary sharply.  

1. Characteristic distance is likely to 
make a difference we believe because the 
failure criteria includes σ33 which varies 
sharply near the free edge. 
2. Use different failure criteria, such as 
delamination, to improve prediction of 
initial failure 
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6.10.2 Bonded Doubler Validation – Tong Example 
A schematic for the geometric configuration of bonded doubler 
specimens used by Cheuk and Tong [6.10.1] is shown in Fig. 
6.10.1.  The material used for manufacturing the composite 
adherends was T300/934 carbon/epoxy plain-woven, with 
orientation of 0°. Both linear and nonlinear analyses were 
performed to predict the failure load of the specimen subjected 
to longitudinal tension. The maximum principal stress criterion was used to predict sectional 
fracture of the adherends. The results were compared to ultimate failure experimental data 
provided by Tong. It shows that the failure location predicted by HS-BondJo matches well with 
experimental observation, however the predicted failure load for both linear and non-linear 
adhesives was fairly conservative compared to the average test observed failure load, as shown 
in Table 6.10.1.  The discrepancy may be due to the progressive damage involved in the 
experiment, whereas HS-BondJo accounts only for damage initiation. Refer to the Volume 3 for 
a more detailed description of the problem and results. 

 
 

Table 6.10.1, Comparison of HyperSizer-BondJo predicted to average test failure load 
 Average Test HS-BondJo  

Linear Adhesive 
HS-BondJo  

Non-Linear Adhesive 
Failure Load 18.6 kN  

(4180 lb) 
13 kN  

(3147 lb) 
14 kN  

(3147 lb) 
 
 

Table 6.10.2, Individual test data summary for bonded doubler specimens. 
 

 z 

x 

3.44 

45 95

T300/934 plain woven [0]8s

T300/934 plain woven [0]8s 

Fig. 6.10.1, Schematic of bonded doubler test specimens examined by Cheuk and Tong. Six 
specimens were tested and the results are summarized in Table 6.10.2.  

 Adherend 13.44 

0.16 

Width = 12.2 

Adherend 2 a 

All dimensions in mm. 

Note: This example assumes 
the typical academic sign 
convention.  See Section 
6.11 for details. 
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Results 
Typical results from the HS-BondJo analysis of this problem are shown below.  The margin of 
safety was calculated along the length of the joint and through its thickness as shown in Figs. 
6.10.2 and 6.10.3.  Because no strain gage or other data was provided by the author, the only 
validation metric for HS-BondJo was the failure load as listed in Table 6.10.1.   
 
 

 

 

 
Fig. 6.10.2, Through-the-thickness distribution 
of margin of safety of adherend 1 at point a 
with linear adhesive under P =13 kN. 

Fig. 6.10.3, Through-the-thickness distribution 
of margin of safety of adherend 1 at point a 
with nonlinear adhesive under P =14 kN. 

Linear adhesive Nonlinear adhesive 

Margins of Safety in Adherend 1 at x/L=1.0 Margins of Safety in Adherend 1 at x/L=1.0 
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6.10.3 Bonded Doubler Validation – NASA Example 
 
A second validation problem involved skin/flange specimens 
that were studied by NASA [6.10.2]. The configuration is 
shown schematically in Fig. 6.10.4. The specimen consists of 
a tapered flange bonded to the skin. The skin was made of 
IM7/8552 graphite/epoxy prepreg tape with nominal ply 
thickness of 0.148 mm with the layup shown below. The 
flange was IM7/8552 plain woven fabric, with a nominal 
thickness of 0.212 mm. The flange was pre-cured, cut to size, 
machined with a 25° taper along the edges and co-bonded 
with uncured skin using one ply (0.178 mm) of grade 5, FM 
300 adhesive film. The panel then was cut into 1.0 in. wide 
by 7 in. long specimens. 

 
 

    25o 

1.776

177.8

25.4 

50.8

42

All dimensions in mm

3.862

Skin: [45/-45/0/-45/45/90/90/-45/45/0/45/-45] IM7/8552 Prepreg, tply = 0.148  
Stiffener: [45/0/45/0/45/0/45/0/45] IM7/8552 plain woven fabric, tply = 0.212 
Adhesive: Grade 5 FM300, thickness = 0. 178 mm 

Fig. 6.10.4, Schematics of a skin/flange specimen 

See 
Fig.6.10.5 

   x 

Nxx=700N/mm 

Note: This example uses the 
typical academic sign 
convention.  See Section 
6.11 for details. 

Note: Results for this 
Validation Example have 
been updated in [6.10.5] 
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Both linear and nonlinear adhesive properties are used in the analysis. The failure criterion of 
maximum transverse principal stress is used to predict the onset of matrix cracking and the 
corresponding margin of safety is checked at every point in the adherends.  The experimental 
data, which includes both quasi-static and fatigue failure data, is shown in Fig. 6.10.6.  The 
BondJo results are compared only to the average quasi-static test failure load of 17.8 kN.  The 
predicted location of damage onset by linear analysis is consistent with experimental 
observation, however the predicted damage initiation load is 24.4 kN, about 1.4 times the test 
average result.  In the analysis using nonlinear adhesive properties, yielding of the adhesive 
prevented matrix cracking failure from occurring, even at 27.6 kN.   Davila [6.10.3] also studied 
this problem and pointed out that matrix cracking should not be used to predict damage initiation 
because the initial matrix cracking is very minor and leads very quickly to delamination. His 
suggestion was to use a delamination failure criterion to predict damage initiation.  Please refer 
to the Volume 3 for detailed description of validation of this problem. 
 

Table 6.10.3, Comparison of HyperSizer-BondJo predicted to average test failure load 
 Average Test 

(static failure only) 
HS-BondJo  

Linear Adhesive 
HS-BondJo 

Non-Linear Adhesive
Failure Load 17.8 kN  

(4000 lb) 
24.4 kN  
(5480 lb) 

> 27.6 kN 
(6200 lb) 

 

45o 
0o 
45o 
0o 
45o 
0o 
45o 
0o 
45o 

adhesive 
 
 
laminate 

 

δ 
Lf 

δ = 0.48889 
Lf = 21.48889 

0.212 

0.178 

Fig. 6.10.5, Modeling of the flange scarf 

x 

z 

Position 2     Position 3 Position 4 Position 5 

Position 1 

a 
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Fig. 6.10.6, Quasi-static and fatigue failure loads for the NASA 
tested skin/flange specimens.  HyperSizer-BondJo results were 

compared only to the quasi-static data. 

average damage initiation load 
P0 = 17.8 kN 
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Results 
A sampling of the results from HyperSizer-BondJo results for the NASA scarfed flange 
validation example. More comprehensive results for this problem are shown in Volume 3. 
 
Black = Peel Stress (σz); Red = Interlaminar Shear (τxy); Blue = Interlaminar Shear (τyz) 
 

 

 
 

 

Fig. 6.10.7, Adhesive peel and interlaminar shear stresses 
along the bondline of the NASA skin/flange specimens.  

Adhesive Stresses along the Bondline 

  

Fig. 6.10.8, Through-the-thickness distribution of interlaminar stresses at 
positions 1 and 2, as shown in Fig. 6.10.5 

Out-of-plane stresses at Position 1 Out-of-plane stresses at Position 2 
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Fig. 6.10.11, Through-the-thickness 

distribution of interlaminar stresses at 
positions 5, as shown in Fig. 6.10.5 

 

Fig. 6.10.12, Through-the-thickness 
distribution of the margin of safety of skin at 
the bondline corner(position 1), under 
longitudinal tension of 24.4 kN.  Note this is 
adherend 1 only, therefore z=0 is at the 
bondline. 

 

  

Fig. 6.10.9, Through-the-thickness distribution of interlaminar stresses at 
positions 3 and 4, as shown in Fig. 6.10.5 

Out-of-plane stresses at Position 3 Out-of-plane stresses at Position 4 

a predicted damage initiation 
load P0 = 24.4 kN 

Out-of-plane stresses at Position 5 
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6.10.4 Single Lap Validation – Tong Example 
Tong’s single-lap joint specimen [6.10.4] without pre-cracks 
was selected as a validation case for HyperSizer-BondJo’s 
single-lap joint capability. The specimen is schematically 
illustrated in Fig. 6.10.13. The joint adherends are 
manufactured by laminating eight plies of T300/934 plain 
woven prepreg in the 0° direction. The adherends were bonded together using FM300-K film 
adhesive with uniform thickness of 0.16 mm. Both linear and nonlinear analyses were performed 
to predict the failure load of the specimen subjected to longitudinal tension, although the linear 
and non-linear results show very little difference. Max stress criterion is used to predict initial 
failure. The tested load-displacement curves of the joint specimens show very pronounced initial 
damage and damage evolution prior to the ultimate failure, as shown in Fig. 6.10.14. The failure 
location predicted by HS-BondJo matches well with experimental observation. The predicted 
failure load with linear analysis is 6.85 kN, which correlates well with the measured initial 
failure load of 7.2 kN. The predicted initial failure load using nonlinear adhesive is only slightly 
different, which is 6.82 kN. This is due to that the in-plane tensile stress is less affected by yield 
of adhesive layer than the out-of-plane stresses. Please refer to the Volume 3 for detailed 
description of validation of Tong’s problem for single-lap joints.  
 
 

 
 

Table 6.10.3, Comparison of HyperSizer-BondJo predicted to average test failure load 
 Average Damage 

Initiation Load for 
20 Specimens  

HS-BondJo  
Linear Adhesive 

HS-BondJo 
Non-Linear Adhesive

Failure Load 7.2 kN 6.85 kN 6.82 kN 
 

P 

50 100 100 

1.72 
0.16 

All dimensions in mm 

d/2 d/2 

a 

cracks 

Fig. 6.10.13, Single lap joint configuration in Tong’s problem. 

A1

A2 z

x Adherend 1 

Adherend 2

Note: This example uses the 
typical academic sign 
convention.  See Section 
6.11 for details. 
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Fig. 6.10.15, Through-the-thickness margin of 
safety of adherend 1 at point 'A1' with linear 
adhesive (P =6.85 kN).  Note this is adherend 1 
only, therefore z=0 is at the bondline. 

Fig. 6.10.16, Through-the-thickness margin of 
safety of adherend 1 at point 'A1'  with 
nonlinear adhesive (P =6.82 kN). Note this is 
adherend 1 only, therefore z=0 is at the 
bondline. 

 
 
 
 

 

Fig. 6.10.14, All of the load-displacement curves from the experimental results deviate 
from linear at the almost the same point 'P', where initial failure occurs. Thus, the initial 

failure load can be estimated as Fini = 7.2 kN. As the load continues to increase, the 
damage (delamination) evolves to their respective ultimate failure loads.

P 

Linear adhesive  
P = 6.85 kN 

Non-linear adhesive  
P = 6.82 kN 
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6.11 Sign Conventions and Reference Planes 

6.11.1 Sign Convention 
 
Equations, loads, geometry 
specifications and results in this 
document are reported in either of two 
sign conventions, depending on whether 
the discussion involves a full aircraft 
panel application or a standalone test 
article.  These two coordinate systems 
are referred to as the “HyperSizer 
Panel” sign convention or the “Typical 
Academic” sign convention. 
 
The first of these, the HyperSizer Panel 
sign convention, is shown in Fig. 6.11.1.  
This sign convention follows that of a 
typical skin-stringer type of airframe 
construction.  The x-direction of the 
panel is parallel to the direction of the 
panel stiffeners and for composite 
laminates, this is also the 0° ply 
direction.  The positive z-direction in 
this case is in the opposite direction of 
the stiffener.   All loads, results and 
geometry specifications in the 
HyperSizer software are always 
reported using this sign convention. 
 
The second sign convention, called the 
“Typical Academic” sign convention is 
shown in Fig. 6.11.2.  This is the 
coordinate system that is most likely to 
be encountered in the literature for 
either test specimens or new analytical 
techniques for bonded joints.    In this 
case, the x direction is perpendicular to 
the stiffener and the positive z-direction 
is in the same direction as the stiffener.  
All of the theoretical development as 
well as the verification and validation 
examples in this document are reported 
using the typical academic sign 
convention. 
 
 

 

 

 
Nx 

Ny 

My 

Nxy 

P 

Flip Over 

Fig. 6.11.1, The “HyperSizer panel” sign convention follows 
that of a typical aircraft skin-stringer type structure where the 

x-direction lines up with the stiffeners or the 0° direction of 
composite laminates.  HyperSizer loads and results are 

reported in this coordinate system. 

a) 

b) 

c) 

d) 
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Fig. 6.11.2, The “typical academic” sign convention follows that of a standalone test article.  In 
general, this is the sign convention that appears in technical articles that describe test data or 
analysis methods specific to joint analysis.  Most of the HyperSizer-BondJo verification and 

validation results are reported using this sign convention. 

x 

y 
z 

Nx 
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6.11.2 Reference Planes 

6.11.2.1 Reference Planes for Reporting of Results 
 
In all of the result plots shown for the bonded joint examples, it is important to understand not 
only the sign conventions but also the reference at which these results are plotted.  In the 
HyperSizer panel coordinate system, the reference plane is always the midplane of the panel 
facesheet as shown in Fig. 6.11.3.    This is true for the force, displacement, moment and 
curvature plots as well as for results such as the panel effective ABD matrices and neutral axis 
offsets. 

 
The reference plane for results in the typical, academic coordinate system is shown in Figs. 
6.11.4 and 6.11.5.   In each of these cases, the z=0 reference plane is located at the midplane of 
the adhesive layer.  In the case of a bonded doubler, the x=0 reference plane is located at the 
centerline of the overlap region such that the joint is symmetric about the z axis.  In the case of a 
single lap joint, as shown in Fig. 6.11.5, the x=0 reference plane is located at one end of the 
overlap region. 
 

 
 

 

z 

x 

Fig. 6.11.4, Reference plane for reporting results in the typical 
academic sign convention.  Plots of stresses and strains under this sign 
convention always assume that the z=0 reference plane is at the center 
of the adhesive layer such that adherend 2 is positive z and adherend 1 

is negative z.  The x coordinate originates at the center of the joint.  

z=0 reference plane 
Adherend 2 

Adherend 1 

x=0 reference plane 

 
y 

z z=0 reference plane 

Stiffener Flange 

Facesheet 

Fig. 6.11.3, Reference plane for reporting of results in the HyperSizer 
panel coordinate system.  HyperSizer reports all results such as 
forces, moments, displacements, curvatures, etc. as well as ABD 

matrices and neutral axis offsets at the midplane of the upper 
facesheet. The x coordinate originates at the center of the joint. 

x=0 reference plane 
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6.11.2.2 Reference Planes for Introduction of Loads 
 
The reference plane for introduction of loads in each coordinate system is not necessarily the 
same as that for reporting of results.  In the HyperSizer coordinate system, shown in Fig. 6.11.4, 
the two reference planes are one and the same.  That is, loads are always introduced at the 
midplane of the stiffener facesheet.   
 

 
 
In the typical academic coordinate system, the formulation of BondJo allows for introduction of 
loads in either adherend, as shown in Fig. 6.11.5.  These loads are applied at the neutral axis of 
that adherend.  Note that if the laminate is unsymmetric, this reference location will not be the 
same as the laminate midplane.  In all bonded doubler verification and validation example cases 
presented here, loads are applied only for adherend 1 and the loads for adherend 2 are set to zero 
(this is the realistic case of a loaded bonded doubler joint). 

z

xAdherend 1 

Adherend 2 

L

Fig. 6.11.4, Reference plane for reporting results in the typical academic sign 
convention for single lap joints.  Plots of stresses and strains under this sign 

convention always assume that the z=0 reference plane is at the center of the adhesive 
layer.  The x coordinate originates at the beginning of the overlap region.  

z=0 reference plane 

x=0 reference plane 

 
y 

z 

Fig. 6.11.4, In the HyperSizer panel coordinate system, loads are always introduced 
at the same reference location as the reporting of results, that is the midplane of the 

stiffened panel facesheet. 

Stiffener Flange 

Facesheet 

My 

Ny 
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z 

x 

Fig. 6.11.5,  In the BondJo formulation, each adherend of the joint is treated as a 
separate piece for introduction of loads and they are introduced at the adherend 
neutral axis.  In all cases presented here, the loads at the free edge of adherend 2 

(Mx,2 and Nx,2) are set to zero and loads are only applied to adherend 1.   

Adherend 2 

Adherend 1 

Mx,1 

Nx,1 

Mx,2 ( = 0 ) 

Nx,2 ( = 0 ) 
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7 Composite Material Stress Analysis and Failure 
 
This chapter covers certification issues with composite material laminate strength. The primary 
purpose of this chapter is to document failure theories and how to design composite laminates for 
required level of conservatism.  
 
Contents 
Design criteria are first discussed then an extensive review of the most current strength failure 
theories is provided, following with detailed description of the following three new theories 
implemented in HyperSizer:  
 

• Hashin fiber and matrix failure criteria (section 7.5.3 and 7.8) 
• LaRC03 fiber and matrix failure criteria. This is an actively developed criteria from 

NASA Langley’s Carlos Davila  (section 7.5.6 and 7.7) 
• Strain Invariant Failure Theory (SIFT) on the micromechanics level using the 

Generalized Method of Cells (GMC), not FEA. This is an actively developed criteria 
from Boeing’s Jon Gosse. (section 7.5.7 and 7.9) 

 
The strength of composite laminates has been an area of active research for several decades. 
There are many failure criteria that range from the simplistic such as max strain and max stress 
to more complicated ones such as Puck and the newer emerging LaRC03 [7.1, Davila] and the 
Strain Invariant Failure Theory (SIFT) proposed by Gosse [7.2 and 7.3, Gosse] that includes 
some aspects of micromechanics that investigates failure at the ply and matrix constituent level.  
For all of these criteria, including others such as Tsai-Hill, Tsai-Wu, Tsai-Hahn, and Hashin we 
have included in the composite material strength correlation examples in Vol 3. The World Wide 
Failure Exercises (WWFE), [7.4, 7.5 and 7.6 WWFE], reports the failure criteria that best 
matches their test data is Puck. The Puck failure theory was researched and is described in 
Section 7.5.5.  However, we decided to not implement it in HyperSizer because it is deemed un-
robust and impractical to use by industry due to the need for specialized material data.  LaRC03, 
also a physically based approach appears to perform comparable to Puck, without the need for 
identifying complex fitting parameters which Puck requires [7.7, 7.24, Puck]. Data types 
identified by MIL-HDBK-17 are all that is needed for LaRC03. 
 
Though HyperSizer implements sophisticated theories such as the promising LaRC03 and the 
micromechanics based Boeing Strain Invariant Failure Theory (SIFT), as developers of a 
commercial tool, we are attempting to strike a proper balance between these physically based 
approaches and simpler ones that effectively capture behavior on the macroscopic level. The best 
new research along with traditional methods is investigated to find the right balance of theory 
and practicality. With this in mind, based on the World Wide Failure Exercises (WWFE) 
published data and other published data, the Tsai-Hahn failure criteria best matched our 
larger set of test data and required the least amount of CF fitting, i.e. is tentatively deemed 
most accurate. Note that the Tsai-Hahn failure criterion is not included in the WWFE reports. 
The complete listing of our determined correlation factors for each failure criteria is reported in 
Volume 3, Chapter 1.  
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7.1 Background 
Practicality, an appropriate engineering cost of applying a theory successfully, is the key to 
acceptance of any failure theory. Acceptable costs vary with the criticality of a part and the 
volume of the end product. Costs of applying failure criteria are: 

• programming tool automation 
• verification and validation of the delivered method/tool 
• deployment and training cost of the tool.  

 
These costs are substantial, especially for more advanced theories that are physically based (as 
defined later in this chapter) and challenging to correctly implement and verify. HyperSizer, as a 
result of this SBIR, provides one means of reducing the implementation cost of deploying many 
different failure criteria by 
 

• automating their use in a verified tool  
• validating all of them with significant test data 
• providing a way for the end user to correlate to in-house tests the effects of their specific 

material processing (M&P) 
• reducing Information Systems (IS) deployment effort and reducing the amount of 

engineering end-user training time.  

7.1.1 The Physics of Composite Failure 
Failure of composites occurs physically at the fiber/matrix constituent level. The fiber, matrix, or 
the interface that bonds the fiber to the matrix fails. Polymer matrix composites (PMC), are 
typically brittle even with ductile matrix materials because the material system as a whole is 
limited by fiber strain.  
 
Pure tension fiber failure is straightforward to characterize. Compression fiber failure is likely 
not limited by the strength of the fiber, but rather by the fiber/matrix interaction during fiber 
buckling or during kink banding. As such, fiber waviness and misalignment during processing 
(M&P) is an important effect and gives rise to the notion of “apparent compression strength.”   
Less stiff fibers such as fiberglass may actually fail in pure compression strength. Observed 

Summarized in Volume 3 are important findings from the correlation to 130 test 
data points, including those from the World Wide Failure Exercises (WWFE). 
Statistically relevant amounts of correlation data are provided in Volume 3, 
chapters 3 & 4. Chapter 3 contains failure envelopes generated by HyperSizer for 
failure theories: Max Strain, Max Stress, Tsai-Hill, Tsai-Wu, Tsai-Hahn, Hoffman, 
Hashin Matrix Cracking, Hashin Fiber Failure, LaRC03 Matrix Cracking, and 
LaRC03 Fiber Failure. Overlaid on the HyperSizer predicted failure envelopes are 
test data from WWFE and other published data. Next to the HyperSizer failure 
envelopes are the published failure envelopes produced by the invited research 
contributors of the WWFE. This layout provides a convenient visualization 
comparison. Chapter 4 provides the CFs and histograms for each failure theory to 
all of the 130 test data points.  Issues related to Material & Processing (M&P) and 
in-situ strengths are addressed in Volume 2, Chapter 4.  
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nonlinear in-plane shear behavior may be due to fiber rotation instead of matrix material 
nonlinearity.  
 
Some of the included test data 
from the World Wide Failure 
Exercises (WWFE) include 
both graphite and glass fibers. 
The failure envelope for a 
glass fiber composite, shown 
in Fig. 7.1.1, depicts six 
unique physical failures 
identified by the LaRC03 
theory, two of which are for 
fiber compression.  
 

7.1.2 V&V of Failure 
Criteria  

All failure criteria must be 
backed up with statistically 
relevant test data before use on 
a production vehicle. Proper 
verification and    validation for 
failure criteria must be given to 
the industrial end user before its 
use. To address this need, we 
have collected 130 test data 
points and have correlated this 
data to almost all of the 
currently used failure criteria. 
Failure theories can be 
classified as either being 
physically based (ie. able to 
distinguish between type of 
failure: matrix vs. fiber) and 
those that do not distinguish but 
can still handle general 
loadings via interaction terms. 
It will be shown that although 
current research and future 
improvement is likely with the 
physically based criteria, such 
as NASA Langley’s LaRC03; 
to date, without specific M&P 
correlation, the Tsia-Hahn 
interaction criteria, from our 
data, is most reliable and 
accurate. Fig. 7.1.2 compares 

Fig. 7.1.2, Compressive strength of [+/-θ]s AS4/3502 predicted 
by different failure theories. For the 0, 90, and 45 angles, the 
criteria pass through the test data since these angles are test data 
given anchor points. At different angles the predictions vary. As 
an example of error, the orange horizontal lines indicate the 
large difference in test and prediction at 30° for max strain.  In 
this plot LaRC03 matches best. Tsai-Hahn is not included. 

 

Fig. 7.1.1, LaRC03 failure criteria distinguishes between six 
different possible physical failures, and so, unlike interaction 
criteria such as Tsai-Wu or Tsai-Hahn, is deemed more 
promising in the long term, especially for progressive failure.  

 

-Yc
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tests to failure theory predictions for a specific M&P.  
 
The composite strengths included in this report are for pristine laminates, meaning without 
damage. For an airframe design, damage tolerance and survivability allowables would be 
determined and used as additional limiting strength requirements. Furthermore, the strength 
allowables presented here are based on damage initiation and not ultimate laminate strength 
which can be predicted using progressive failure techniques. The presented CFs are based on 130 
tests of either unidirectional ply or [+/-θ] laminates which do not possess post damage initiation 
strength. In essence, the effects of off axis loading on a unidirectional tape material of single ply, 
or [+/-θ] laminate are correlated. Note, that the anchor points for nearly all failure criteria are the 
0°, 90°, and 45° (i.e. pure shear) ply orientations. So at these angles the material allowable 
strengths are “a given” and all failure criteria pass through these points, such as shown in Fig. 
7.1.2. 

7.1.3 Uncertainty at the Ply Level 
Even if a failure theory is physically based and able to discern the actual constituent failure, the 
practical focus is to identify the form and process dependent properties on the macroscopic (ply) 
level, which by definition includes many of the built-in uncertainties and variability that exist in 
a laminate [7.8].  This is particularly true when moisture and temperature play a significant role 
in the stress/strain when failure occurs. Presented in Chapter 4.7 is a method for including 
specific M&P effects into all failure criteria correlations, including physically based theories that 
may not natively capture such macroscopic uncertainties.  
 
Vol 3, Ch 3 illustrates significant variation in observed test data. Even the most straightforward 
strength properties are difficult to measure accurately due to panel processing, specimen 
machining, test techniques, and intra vs. inter lab variability. Combined stress states are nearly 
impossible to characterize in a repeatable manner for general use with any failure criteria [7.8]. 
Clearly, the need is to view composite strength not in a deterministic fashion, but rather in a 
probabilistic manner that is founded on establishing these variabilities to derive the required 
confidence in design.  
 
The traditional manner to include variability in composite materials is to statistically characterize 
each individual property on the ply level as being either an “A” or “B” Basis design-to value. 
This design criteria approach is discussed next. 
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7.2 Design Criteria 

7.2.1 Typical material properties vs. Design-to allowables 

 
 
There are two distinct types of material properties. Typical which are derived from average 
experimental measurements, and design-to allowables, which are conservative values that 
represent a statistical confidence. When performing test predictions, typical properties are used. 
When designing or analyzing margin-of-safeties, design-to allowables are used, either “A” or 
“B” basis. [7.9, 7.10] 
 
“A” basis – At least 99% of the population of values is expected to equal or exceed the A basis 
mechanical property allowable, with a confidence of 95%.  
 
“B” basis – At least 90% of the population of values is expected to equal or exceed the B basis 
mechanical property allowable, with a confidence of 95%. 
 

7.2.2 Design-to allowables 
There are many real world structural integrity and design issues that must be considered when 
establishing design-to allowables. In this report, pristine laminates (un-notched) are addressed. 
Other important in-service conditions reduce pristine allowables to lower strain/stress values 
noted as Notched values [7.8, Rousseau’s book]. These additional in-service allowables are for: 
 

• Damage Tolerance 
• Durability 
• Survivability 

 

Fig. 7.2.1, An example table from Mil Hnbk 17 showing typical (mean) and design-to (B-
value) material properties. For, F1

tu, the typical value is 114 ksi, and the B-basis is 91.9 ksi, a 
20% reduction in allowable stress.  
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7.2.3 Ply vs. laminate allowables 
Some companies in industry define final design strength allowables for composites on the 
laminate level. Others in industry define final deign-to allowables on the ply level. Primarily all 
of the data and methods presented in this report are based on ply level approach. It is likely that 
either approach, which at first glance may seem vastly different, in essence provide nearly 
equivalent resulting load allowables.  
 

 
 
A benefit of laminate testing is the ability to capture in-situ macromechanic effects. However, in-
situ effects can also be captured and quantified on the ply level as described in section Ch 4.7 
and accurately used to quantify laminate strength. As a side note, this approach to identifying 
laminate design to values is similar to the NASA SP-8007 buckling curve, in that the curve 
includes both data scatter and a defined reliability with no data insight as to how to adjust an 
allowable for different reliabilities.   
 

7.2.4 1st ply damage initiation vs. progressive failure 
 
Composite laminated material may continue to carry additional loading after a ply fails. Post 
damage initiation strength can be analyzed and is often referred to as progressive failure. 
Traditional aerospace design margins-of-safety for laminate strength are based on first ply 
failure. This may change in the future with the availability of reliable progressive failure 
methods. When performing test article ultimate failure prediction, progressive failure analyses, in 
conjunction with typical material properties, are needed.  
 
Progressive damage can be modeled iteratively with any failure criteria to; identify a damage 
initiation, increment a load increase until another failing event, and continue until eventual final 
collapse. A benefit may be that physically based failure criteria, due to distinguishing between 

Fig. 7.2.2, An example “carpet pot” laminate based strain allowable for a (0/±45/90) layup 
graphed as a function of  % fibers in the analysis direction. Note in the left figure that the design-
to strain is ≈½ the typical un-notched measured allowable strain.  
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fiber/matrix constituent failures, may prove to be better suited than interaction type failure 
criteria such as Tsai series.  
 
Progressive failure may also be modeled on the ply (macro) and fiber/matrix constituent (micro) 
levels.  

7.2.4.1 Macro ply level progressive failure 
If on the ply level, because LaRC03, Hashin, and Puck are all phenomenological based in that 
they identify failure as being in the matrix or fiber, this may lend them well to progressive failure 
techniques. An interaction type failure like Tsai-Wu or Tsai-Hahn may not be appropriate for 
progressive failure.  For this reason, LaRC03 may prove to be the better failure criteria for a 
typical laminate that will undergo progressive failure to achieve ultimate loading.  

7.2.4.2 Micro fiber/matrix level progressive failure 
Fig. 7.2.3 shows computed failure envelopes for the WWFE AS4/3501-6 (Case 7) based on the 
micromechanics approach. Shown in the legend, is a HyperSizer micromechanics module called 
MAC/GMC, which stands for Micromechanics Analysis Code based on the General Methods of 

Fig. 7.2.3, Failure envelope of progressive failure modeled on the fiber/matrix constituent (micro) 
level. Failure data from the WWFE AS4/3501-6 [0/±45/90]s (Case 7). MAC/GMC is a HyperSizer 
micromechanics module. 
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Cells method.  Since this is a [0/±45/90]s laminate, unlike a unidirectional or a ±θ layup, it will 
exhibit additional load carrying capability after first ply, damage initiation.  
 
In Fig. 7.2.3, the red circle dots are damage initiation failures, and the black triangles are the 
ultimate, progressive failures. Large differences in load magnitudes exist between damage 
initiation and final failure, hence the value in benefiting from progressive failure. Two different 
attempts at predicting progressive failure at the micromechanics level are shown. The first in 
blue was performed by fully removing a micromechanics subcell when its stress level goes 
beyond its material allowable. Because this first implementation of micro progressive failure was 
performed without shear coupling, then when one cell was removed, in effect all of the subcells 
in that row were zeroed out as well. It is believed that a shear lag effect would cause a portion of 
the load to be redistributed back into the row, and until the HFGMC (higher theory of the general 
method of cells) is implemented in a progressive failure manner, the expedient solution was 
deemed to only remove 50% of the subcells stiffness. In this manner, a much better comparison 
to test ultimate failure was achieved as shown in magenta. The micromechanics analysis module 
nd progressive failure will be released in future production releases of HyperSizer.  

7.3 Characteristic Dimension 
One principal shortcoming in state-of-the-art composite material strength prediction is not the 
ability to predict in-service stresses, but rather predicting failure once the stresses are computed. 
There are many publications available on methods to accomplish stress computation in the 
vicinity of concentrated load gradients – but there are only a few publications that address failure 
prediction. A key difficulty in predicting failure is selecting how far from the bearing surface for 
a bolted hole, or how far away from the reentrant corner for a bonded joint, to “pull” the stresses. 
This location is known as the characteristic distance [7.11, 7.12] and is a function of many 
variables but is usually quantified as a constant value within a small range depending on the 
specific material system. The characteristic distance for a bonded joint (See mil-hdbk-17-3e, pp 
5-24 to 5-25, in particular, see Fig. 5.3.2.2(b)) is usually about ½ ply thickness to the reentrant 
corner, and for a bolt loaded hole, about 3 ply thicknesses from the bearing surface (noted in red 
color).   

 
More advanced research defines the characteristic distance for a loaded hole, not as a constant, 
but as a characteristic equation which is a function of layup, and biaxial with shear loading 
interaction effects [7.13]. Though fundamentally any failure criteria is applicable once the 
stress/strain field prediction is made of a given geometric detail, the choice of failure criteria is 
inherently related to the characteristic distance defined during the test validation and correlation 
process. That is, a proper characteristic distance/equation is specific to a specific failure criteria. 

Fig. 7.3.1, Illustration of different radial distances used as appropriate characteristic 
distances for: left, bonded joint reentrant corner; and right, bolted hole bearing surface. 
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For bonded joints, over 16 different failure criteria that include 3D stresses of interlaminar shear 
and peel are summarized and validated to tests in Volume 3.  

7.4 Failure analyses for preliminary and final design 
 
Design criteria for composite material strength are different based on the criticality of a structural 
part, and on the stage of design. Where as in preliminary design, design criteria are geared more 
to expedience, and for final design, more aligned to higher accuracy and test validation. The 
reader is referred to [7.8, Rousseau], for more insight. 
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7.5 Review of Best Failure Theories To Date 
 

7.5.1 Max Strain, Max Stress, Tsai-Hill, Tsai-Wu, and Tsai-Hahn failure 
theories 

7.5.1.1 Maximum Stress Criterion 
The maximum stress criterion indicates failure when any stress component exceeds its uniaxial 
strength, with no interaction of the components.  That is, failure occurs when, 
 

11 22 12 11 22, , , , ,t t c cX Y S X Yσ σ σ σ σ≥ ≥ ≥ ≤ ≤       (7.5.1.1) 
 
where, Xt, Yt, Xc, Yc,  and S, are the ply tensile strength in the fiber direction, the ply tensile 
strength in the transverse direction, the ply compressive strength in the fiber direction, the ply 
compressive strength in the transverse direction, and the ply in-plane (1-2) shear strength, 
respectively.  Note that the compressive strengths (Xc and Yc) take on negative values. 
     
For a given ply (or point in a ply) the margin of safety based on the maximum stress criterion is  
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and the margin of safety for the ply or 
(or point in the ply) based on the 
maximum stress criterion is the 
minimum of the three margins of safety 
given above. 
 
A major advantage of the maximum 
stress criterion is its simplicity.  It is also 
based solely on uniaxial ply level test 
data, so it is easy to characterize for a 
given ply.  A major disadvantage of the 
maximum stress criterion involves its 
lack of interaction among the stress Fig. 7.5.1, Maximum Stress Failure Envelope 
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components.  For example, it predicts failure of a ply (or point in a ply) at the same stress in the 
fiber direction (Xt) regardless of whether a sizeable transverse stress (σ22) and shear stress (σ12) 
are also present.  Obviously, this is incorrect as it is well documented that in many cases strong 
stress component interactions affect failure of many types of materials.  As such, the maximum 
stress criterion is often inaccurate, particularly under highly multiaxial stress fields.  In addition, 
the corners present in the failure envelope (Fig. 7.5.1) are not typically observed experimentally.  

 

7.5.1.2 Maximum Strain Criterion 
The maximum strain criterion is identical in form to the maximum stress criterion, but employs 
the strain components rather than stress components.  That is, failure is predicted when, 
 

11 22 12 11 22, , , , ,t t c cX Y S X Yε ε ε ε εε ε γ ε ε≥ ≥ ≥ ≤ ≤    (7.5.1.5) 
 
where, tX ε , tYε , cXε , cYε ,  and Sε  are the ply tensile failure strain in the fiber direction, the ply 
tensile failure strain in the transverse direction, the ply compressive failure strain in the fiber 
direction, the ply compressive failure strain in the transverse direction, and the ply in-plane (1-2) 
engineering shear strength, respectively.  Note that the compressive failure strains ( cXε  and cYε ) 
take on negative values.  A normal strain failure envelope (in strain space) appears identical to 
the rectangle shown in Fig. 7.5.1.  If an orthotropic linearly elastic constitutive relationship is 
assumed,  
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the maximum strain criterion can be expressed in terms of stresses as, 
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           (7.5.1.8) 

 
which results in a quadrilateral failure envelope in normal stress space, as shown in Fig. 7.5.2. 
The margins of safety associated with the maximum strain criterion are given by, 
 

11

11
11

max 

11
11

1 0
MOS

1 0

t

c

X

X

ε

ε
ε

ε
ε

ε
ε

⎧ − >⎪⎪= ⎨
⎪ − <
⎪⎩

    (7.5.1.9) 

 

22

22
22

max 

22
22

1 0
MOS

1 0

t

c

Y

Y

ε

ε
ε

ε
ε

ε
ε

⎧ − >⎪⎪= ⎨
⎪ − <
⎪⎩

    (7.5.1.10) 



 

192 
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and the margin of safety for the ply (or point in the ply) based on the maximum strain criterion is 
the minimum of the three margins of safety given above.  Assuming an orthotropic linearly 
elastic constitutive relationship, these margins of safety can be expressed in terms of stress 
components by substitution using Eq. (7.5.1.6) and Eq. (7.5.1.7). 
 
The advantages and disadvantages of the 
maximum strain criterion are generally 
similar to those of the maximum stress 
criterion.  Which of these two criteria is 
more accurate and more conservative is 
dependent on the composite material 
under consideration.  Care should be used 
when employing the maximum strain 
criterion with a highly ductile, nonlinear 
composite material (e.g., some metal 
matrix composites in the direction 
transverse to the fibers).  In such an 
instance, where the stress-strain response 
becomes nearly flat (i.e., perfectly 
plastic) prior to failure, while the failure 
stress may be well known and quite 
repeatable, the failure strain may vary by 50% or more between tests.  The failure strain is then a 
poor measure of failure due to its large variability.  Obviously, in such a case, the elastic 
relations embodied by Eqs. (7.5.1.6) and (7.5.1.7) are not applicable, nor is Eq. (7.5.1.8). 

 

7.5.1.3 Tsai-Hill Criterion 
The Tsai-Hill criterion is based on an anisotropic extension of the von Mises yield criterion 
proposed by Hill [7.8] and applied to ply level failure by Tsai [7.14].  Unlike the maximum stress 
and maximum strain criteria, it involves a single relationship that includes all plane stress 
components acting on the ply, so the components are able to interact.  Under plane stress 
conditions, for a unidirectional ply, the Tsai-Hill criterion predicts failure when, 
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where, X, Y, and S, are, respectively, the ply strength in the fiber direction, the ply strength in the 
transverse direction, and the ply in-plane (1-2) shear strength.  Under uniaxial loading conditions 
(i.e., only one of 11σ , 22σ , or 12σ  applied) the Tsai-Hill criterion simplifies to the maximum 
stress criterion.  However, in the presence of a multi-axial stress field, all three in-plane stress 
components affect the failure of the ply. The normal stress failure envelope represented by the 
Tsai-Hill criterion is shown in Fig. 7.5.3.  Like a von Mises yield surface, the Tsai-Hill failure 

Fig. 7.5.2, Comparison, max stress to max strain 
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envelope is elliptical, however, the effects of anisotropy are obvious.  Note that, in the presence 
of a superimposed in-plane shear stress ( 12 Sσ > ), the Tsai-Hill normal failure envelope shrinks. 
 
The basic form of the Tsai-Hill criterion given in Eq. (7.5.1.12) does not distinguish between 
tension and compression.  However, by employing Xt or Xc and Yt or Yc based on the signs of 11σ  
and 22σ , it is possible to include the effects of tension vs. compression in the Tsai-Hill criterion.  
This basically amounts to utilizing a different elliptical failure criterion in each of the four 
coordinates of the normal component stress space.  Such a Tsai-Hill failure envelope is depicted 
in Fig. 7.5.4.  Of course, this presupposes that the signs of the in-plane normal stress components 
are known a priori. 
 
The Tsai-Hill criterion margin of safety of a ply (or a point in a ply) is given by, 
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  (7.5.1.13) 

 
For details on the derivation of the margin of safety for various failure criteria, see Chapter 15 of 
Volume 3.  The negative term appearing in the square root in the denominator of Eq. (7.5.1.13) 
implies that it is possible for the Tsai-Hill criterion to provide an infinite or undefined (i.e., a 
complex number) margin of safety.  However, under normal circumstances where the transverse 
strength, Y, is less than the fiber direction strength, X, it is not possible for the term within the 
square root to become negative, therefore the margin of safety is well-behaved. 
 
A significant advantage of the Tsai-Hill criterion, compared to the simpler maximum stress and 
strain criteria, is its improved accuracy [7.14].  The interaction of the stress components allows 
the Tsai-Hill criterion to correlate significantly better with experimental composite ply level 
failure data.  In addition, the fact that the failure envelope is smooth is more realistic, and the fact 
that it entails one equation rather than three (in the case of identical tensile and compressive 
normal strengths) is also advantageous.  These advantages come while the Tsai-Hill criterion is 
no more difficult to characterize than the maximum stress criterion (only the uniaxial composite 
strengths are required).  A disadvantage is that it is more difficult to include distinct tensile and 
compressive normal strengths within the Tsai-Hill theory compared to the maximum stress and 
strain criteria.  However, as discussed above, it can be done.   
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               Fig. 7.5.3, Tsai Hill         Fig. 7.5.4, Tsai-Hill with different compression/tension allowables 
 

7.5.1.4 Tsai-Wu Criterion 
The Tsai-Wu [7.15] criterion, like the Tsai-Hill criterion, is based on a single relationship.  
However, the Tsai-Wu criterion inherently includes distinct normal tensile and compressive 
strengths, clearly an advantage over the ad-hoc methodology required to include this feature 
within the Tsai-Hill criterion.  Under plane stress conditions, for a unidirectional ply, and 
accounting for the fact that the shear strength (S) is independent of the sign of the shear stress 
( 12σ ) the Tsai-Wu criterion predicts failure when, 
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  (7.5.1.14) 

 
where a new interaction term involving 11σ  and 22σ  and an accompanying interaction 
coefficient, 12F , are present.  Thus, in addition to the five uniaxial ply level composite strengths 
(Xt, Yt, Xc, Yc,  and S) present in the maximum stress (and Tsai-Hill) criterion, the Tsai-Wu 
criterion has introduced an additional coefficient that must be determined (or possibly 
discarded).  Unfortunately, the 12F  coefficient cannot be determined via a uniaxial ply level test, 
rather, a biaxial test is required.  For example, if an in plane biaxial test is performed on a ply 
such that 11 22σ σ=  until failure at a stress level of 11 22σ σ σ= = , then the 12F  coefficient is 
related to the biaxial strength, σ , by, 
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Because of the difficulty of experimentally determining the 12F  coefficient coupled with the fact 
that it typically has only a minor effect on the criterion’s predictions, it is often simply set to 
zero.  Alternatively, 12F  may be selected to allow better correlation of the Tsai-Wu theory with 
available experimental failure data. 
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The normal stress failure envelope represented by the Tsai-Wu criterion is shown in Fig. 7.5.5, 
where the 12F  coefficient has been set to zero.  Like the Tsai-Hill failure envelope, the Tsai-Wu 
failure envelope is elliptical, and the effects of anisotropy are obvious.  Also, in the presence of a 
superimposed in-plane shear stress ( 12 Sσ > ), the Tsai-Wu normal failure envelope shrinks. 
 
The margin of safety of a ply (or a point in a ply), excluding the interaction term involving 11σ  
and 22σ , is given by, 
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 (7.5.1.16) 
 
For details on the derivation of the margin of safety for various failure criteria (and how the 
additional interaction term may be included), see Chapter 15 of Volume 3.  Note that the term 
within the square root of the denominator in Eq. (7.5.1.16) will always be positive as the normal 
tensile strengths (Xt and Yt) are always positive and the normal compressive strengths (Xc and Yc) 
are always negative.  Further, while the terms in the denominator outside the square root may be 
negative, they will always sum to a smaller magnitude than the evaluated square root in the 
denominator.  As such, the Tsai-Wu margin of safety will always be finite and real. 
 
In addition to the advantage of included distinct 
tensile and compressive normal strengths, the 
Tsai-Wu criterion has the advantage over the 
Tsai-Hill criterion of being more 
mathematically consistent [7.16].  While it is 
somewhat more complex than the Tsai-Hill 
criterion, the Tsai-Wu criterion is generally 
considered to be more accurate than the Tsai-
Hill criterion.  In many cases, however, the 
failure predictions of these two theories are 
quite similar. 

7.5.1.5 Tsai-Hahn Criterion 
A modification to the Tsai-Wu theory was proposed by Tsai and Hahn [7.17], which amounts to 
estimating the 12F  coefficient as, 
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The Tsai-Wu criterion in which the 12F  coefficient is calculated based on Eq. (7.5.1.17) is 
sometimes referred to as the Tsai-Hahn criterion. 
 

Fig. 7.5.5, Tsai Wu Failure Envelope. 
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7.5.1.6 Summary of Tsai Theories 
Tsai interaction theories consider the anisotropy of composite materials but do not capture the 
physics of various failure mechanisms. In WWFE [7.5, 7.6], Tsai theory has described the 
available experimental results better than other theories for unidirectional laminae. However, it 
has been noted that the theory predicts enhancement of strength under a compression-
compression biaxial loading case.  The predicted shapes by Tsai theory of the final failure 
envelopes for the multi-directional laminates agreed quite well with available experimental 
results. As expected, the predicted initial failure envelopes for the multi-directional laminates 
that continue into progressive failure, are in poor agreement with test data and the revised theory 
by the WWFE contributors that introduce a post-initial failure model significantly improved the 
results. In addition, Tsai theory is linear elastic and can not predict the large non-linear strains 
observed in the test cases where high lamina shear was involved. Overall, Tsai theory proved to 
be in the leading group of those tested in WWFE, with Tsai-Hahn the best overall.  
 

7.5.2 Zinoviev failure theory 
Zinoviev used a development of the maximum stress failure theory, which embodies a very 
simple, but carefully structured, set of non-interactive criteria to identify failure mechanisms and 
to take appropriate post-initial failure action. There is less of an attempt (compared to Puck, for 
example) to provide physically based failure models. 
 
The theory gave reasonably good descriptions of the unidirectional lamina failure envelopes 
though, as expected for a non-interactive failure theory, it overestimated the measured lamina 
strengths at certain loading combinations. The theory was one of the best at predicting initial 
failure events for multi-directional laminates, though none of the theories were particularly 
robust in this area. 
 
The theory gave a reasonably good fit to the experimental final failure envelopes for all of the 
multi-directional laminates, by giving careful attention to effective lamina property degradation 
and unloading after initial failure, and by allowing for fiber orientation during loading. 
Although the theory assumed linear-elastic material properties, it also gave reasonably good 
descriptions of nearly all of the stress/strain curves.  The Zinoviev theory was not considered for 
integration into the HyperSizer software and the details of the method can be found in [7.18]. 

 

7.5.3 Hashin failure theory (2D and 3D) 
Hashin did not participate in WWFE, but he has been recognized as a pioneer for distinguishing 
failure modes in composite failure criteria. Based on his observation of failure of fibrous 
composite laminates with different orientations, he originally proposed a set of failure criteria 
[7.19] in 1973, which are known as the Hashin-Rotem criteria. Two different failure modes were 
identified for unidirectional lamina: fiber failure and matrix failure. The 1973 version of Hashin 
criteria assumed a quadratic interaction between the tractions on the failure plane.  In 1980, 
Hashin [7.20] revised the criteria by introducing the contribution of in-plane shear stress to the 
criterion for fiber tensile failure mode and adding a linear term in the criterion for compressive 
matrix failure mode. The 1980 version of the Hashin failure criteria has been referred to as the 
2D version of Hashin’s failure criteria, which is given by: 
 

Tensile fiber mode (σ11 > 0) 
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 Compressive fiber mode (σ11 < 0) 
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Tensile matrix mode (σ22 > 0) 
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Compressive matrix mode (σ22 < 0) 
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where 

XT is the longitudinal tensile strength of Uni-Directional (UD) lamina 
XC is the longitudinal compressive strength of UD lamina 
YT is the transverse tensile strength of UD lamina 
YC is the transverse compressive strength of UD lamina 
S is the in-plane shear strength of UD lamina 
ST is the out-of-plane transverse shear strength of UD lamina 

 
With reference to the fiber failure mode, the only difference in the 1980 version is the 
contribution of in-plane shear stress to the failure in tension, a modification with no clear 
physical basis. Although the deduction procedure of the final version of the criterion is 
cumbersome, the modification comes from the quadratic interaction Hashin assumes between the 
components of the stress vector associated with the plane of failure. It is important to note that 
the Hashin’s emphasis was to avoid any connection with energy concepts. Instead, his proposal 
is the simplest way to approximate an assumed interaction between different effects once a 
simple linear interaction is discarded. It is noticeable, in any case, that in his paper, Hashin 
considered the possibility of discarding the contribution of the in-plane shear to the tensile failure 
of the fiber. An explanation of the physical basis of the contribution of the shear to the failure of 
the fibers has not been found in the literature, although a specific search has not been conducted 
for this topic. It may be possible to clarify this question by means of a micromechanics analysis, 
followed by the appropriate tests. 
 
With reference to the matrix failure mode, the approach followed by Hashin is different due to 
the impossibility of determining the plane of failure. He assigned the failure to a quadratic 
interaction between stress invariants, canceling the contribution of σ11 based on the assumption 
that any possible plane of failure is parallel to the fibers and that the components of the stress 
vector of any of these planes do not depend on σ11. 
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Hashin also developed a 3D failure criteria by adding the contribution of out-of-plane stress and 
their allowables in a similar way. They are given as 

 
Tensile fiber mode  
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Compressive fiber mode 

CX=11σ                                                                  (7.5.3.7) 
 

Tensile matrix mode (σ22 + σ33 > 0) 
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Compressive matrix mode (σ22 + σ33 < 0) 
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In the tensile matrix mode, discarding the linear term in the 2D case leads to an expression 
identical to his 1973 proposal. In the compressive matrix mode, the linear term is not discarded, 
and the expression is forced to satisfy the fact that if the material fails in the presence of 
transversely isotropic pressure (σ22 = σ33 = -σ), this pressure can reach values much larger than 
the compressive uniaxial failure stress YC. The implication of this idea, which is supported by 
available experimental results, on other failures is not clear. In any case, the most serious doubts 
about the criterion come from the interaction between stresses and allowables derived from the 
interaction between invariants. It is surprising to find that an out-of-plane allowable ST appears in 
matrix compression mode, i.e. Eq. (7.5.3.5). Paris [7.21] performed a parametric study of the 
influence of the value of ST in the predictions for different 2D cases. He showed that this 
inconsistency in Hashin’s 1980 proposal leads to unconservative predictions of matrix 
compression failure with increasing values of ST. 
 
It is also noted that in both the 2D and 3D formulations, the failure criterion for fiber 
compressive mode is simply the maximum stress criteria in the longitudinal direction. However, 
experimental results show that the compressive strength XC can be significantly reduced when in 
addition to σ11 < 0, a significant in-plane shear σ12 is superimposed. Obviously, Hashin’s failure 
theory does not account for this effect. In addition, Hashin’s failure criterion for compressive 
matrix mode can not explain the experimental observation that moderate transverse compression 
increases shear strength of a UD lamina.  
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7.5.4 Sun failure theory 
Sun [7.22] took the same form of Hashin-Rotem failure criteria, but he replaced the ply strength 
with the ‘in-situ’ strength. Sun’s modification is shown below 
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in which Xis, Yis and Sis are the ‘in-situ’ longitudinal strength, transverse strength and shear 
strength, respectively. This criterion is generalized for either tensile or compressive stresses; the 
corresponding (tensile or compressive) strengths must be chosen based on the sign of the applied 
stresses. Failure is assumed when one of the two equations is satisfied. If Eqn. (7.5.4.1) is 
satisfied, then fiber breakage occurs. Eqn. (7.5.4.2) represents the condition for matrix failure. 
The mode of matrix failure is determined by comparing the ratios σ22/Y and σ12/S. Compared to 
Hashin criteria, introduction of the concept of ‘in-situ’ strength gave more flexibility in selecting 
the allowables so as to make the failure criteria match experiments better phenomenologically. 
 
Sun’s renovation using ‘in-situ’ strength of lamina has experimental basis. It was found that 
transverse matrix cracking initiation stress (or strain) of a lamina in a laminate is usually larger 
than the transverse strength of the unidirectional laminate. This so-called ‘in situ transverse 
strength’ in some cases could be as high as 2.5 times the unidirectional transverse strength 
[7.23]. The ‘in situ’ strength is dependent on the lamina thickness and the constraints from the 
adjacent layers. Sun believed that the same phenomenon exists for shear strength, although it has 
not been reported in the literature. 
 
In WWFE [7.5, 7.6], initial failure envelopes for the multidirectional laminates predicted by Sun 
Linear failure theory (L) were in moderate agreement with the measured ones (ranked 8th). 
However, the predicted final failure envelopes for the multi-directional laminates were better 
(ranked 5th). The predicted stress/strain curves were rather mixed. If the response was heavily 
fiber dominated, the strength predictions using Sun’s theory were in good agreement with 
experiment. However, if shearing of the laminae was a dominant feature, this linear-elastic based 
theory underestimated the large non-linear deformations observed in the experiments. The Sun 
theory performed better than the Hashin-Rotem theory in modeling the post-initial failure 
response. Overall the Sun (L) theory had few fundamental weaknesses and performed 
sufficiently well to be in the leading group of theories.  The Sun failure theory was not 
considered for integration into the HyperSizer software. 
 
The key of Sun’s failure theory is to determine the ‘in-situ’ strength of lamina. But this appears 
not a simple task. In WWFE, Sun took the ‘in situ’ tensile transverse and shear strength to be 1.5 
times those measured from unidirectional laminates base on his experience. Sun has also tried to 
give some physical explanation of ‘in-situ’ strength of laminate under transverse compression. 
The failure criterion given by Sun for matrix compression is  
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where η is an experimentally determined constant which can be regarded as the internal material 
friction parameter. The ‘in-situ’ shear strength S– ησ22 increases with transverse compression σ22 

(negative sign) so that it takes into account of the beneficial role of that compressive stress σ22. 
Even though Sun’s failure theory for compressive matrix mode is a big step forward from 
Hashin’s, it has not given the physics basis of all the in-situ strengths used in the theory, instead 
the theory used many empirical relations. For instance, Eqn. (7.5.4.3) assumes that the failure 
plane is always parallel to the fiber direction, however, many test cases show that with increase 
of transverse compressive stress, the failure plane varies from 0o to 53o. Therefore, to give the 
insight of the failure mechanisms of matrix compressive failure requires more refined theories.  
 

7.5.5 Puck failure theory 
Evolving from extensive experimental studies, Puck’s failure theory [7.24] attempts to correlate 
the experimental results with micromechanical failure mechanism of composite material. Puck’s 
phenomenological model not only distinguishes failure modes of fiber breakage and inter fiber 
failure (matrix cracking), but also gives more realistic mechanics basis for the failure. In the 
following, we discuss Puck’s Fiber Failure (FF) Criteria and Inter Fiber Failure (IFF) Criteria.   
 

7.5.5.1 Fiber failure (FF) 
Puck assumed that fiber failure in a UD composite under a combined state of stress (σ11, σ22, σ33, 
τ12, τ13, τ23) will occur at the same fiber stress as that which is acting in the fibers at failure under 
a uniaxial stress σ11, as shown in Figure 7.5.6. The fiber failure criterion is given as 
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By this it is assumed that for the fiber, the failure condition of the maximum normal stress in the 
fiber direction holds. It should be pointed out that XfT and XfC are the tensile stress or the 
compressive stress in the fiber which are reached under uniaxial tensile or compressive load with 
σ11 at fracture of the unidirectional composite material but not in single fibers or fiber bundles. 
Assuming linear elastic material behavior, these are given by 
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While XfT can be regarded as the ‘true’ tensile strength of the fiber (embedded in the composite), 
XfC is usually not the ‘true’ compressive strength of the fiber, because at σf1 < 0, failure mostly 
occurs through elastic instability (so-called kinking) of the fibers embedded elastically in the 
matrix. However, it can be assumed that the buckling is not influenced by an additional stress 
σ22, at most by an additional stress τ12. Thus, Xfc can be regarded as a constant. 
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Thus, Puck’s fiber failure criterion is actually established on the basis of the maximum true fiber 
stress, which needs to be calculated from micromechanics models. However, unlike traditional 
micromechanical analysis, Puck developed an empirical model to calculate the fiber stress. 
Under bi-axial loading (σf1, σf2), Puck gave the fiber longitudinal strain as 
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where the term 22σσfm  is the fiber stress 
σf2, the factor mσf accounts for a ‘stress 
magnification effect’ caused by the 
different moduli of fibers and matrix 
(in the transverse direction), which 
leads to an uneven distribution of the 
stress σ22 . From the micromechanics 
point of view, mσf is equivalent to a 
“stress concentration factor”. Puck 
gave the values of mσf based on his 
experience. For glass fiber composites, 
mσf ≈ 1.3; for carbon fiber composites, 
mσf ≈ 1.1.  
 
Assuming perfect bond between fiber and matrix, the fiber failure criterion under combined (σf1, 
σf2), loading is given as 
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after some algebra. To account for the strength reduction by fiber kinking induced by in-plane 
shear load as fibers are subjected to compressive loading, Puck added an empirical shear 
correction in Eqn.( 7.5.5.4). Then the failure criterion for fiber compression becomes 
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where (10γ21)2 is a purely empirical factor. Note that γ21 is used in this shear correction, instead 
of τ21. Puck explained that the value of τ21 is uncertain after crack initiation while the value of γ21 
is not. 
 

Fig. 7.5.6, lamina subjected to longitudinal stress 

σ1

σ1
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7.5.5.2 Inter-Fiber Failure (matrix cracking) 
Based on extensive experimental studies on carbon-fiber/epoxy and glass-fiber/epoxy laminates 
subjected to transverse compression or tension, Puck found that unidirectional layers usually 
fracture on planes parallel to the fiber direction, with various angles as the loads change. Similar 
to the Mohr-Coulomb criterion for rock and soil, Puck believed the fracture in the lamina is 
exclusively created by the stresses which act on the fracture plane. In the case of inter-fiber 
fracture on an inclined plane 
parallel to the fibers these are a 
normal stress, σn, and two shear 
stresses, τnt and τn1 (Fig. 7.5.7). 
The stress σn represents a 
transverse stressing (σ┴), the shear 
stress τnt a transverse-transverse 
shear stressing τ┴┴ and the shear 
stress τn1 a transverse-longitudinal 
shear stressing (τ┴║). The term 
`stressing' has been introduced by 
Puck in order to distinguish 
between stress conditions of 
different character, e.g. σ║, σ┴, 

 τ┴┴, τ┴║. 
 

When σn > 0, i.e. transverse tensile stressing, it causes fracture together with τnt and τn1. Because 
of the existing symmetry, the direction of the shear stresses cannot influence fracture. The failure 
criterion for σn > 0 is given by Puck as 
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where 

AR )(+
⊥  is the fracture resistance of the action plane due to transverse-tensile stressing 
AR⊥⊥     is the fracture resistance of the action plane due to transverse-transverse stressing 
AR ||⊥      is the fracture resistance of the action plane due to transverse/parallel shear stressing 

 
The strength allowables used in the equation (7.5.5.6) are consistent with Puck’s hypothesis: 
fracture of the plane in which the stresses act which cause fracture is exclusively created by the 
stresses which act in this plane. Consequently, the three stresses σn, τnt, τn1, which must 
necessarily have a common stress action plane, must be compared to the fracture resistances RA 
of their action plane, and not just to some strength which might belong to any other fracture 
plane. 
 
It is well-known that a tensile stress σn > 0 promotes fracture, while a compressive stress σn < 0 
impedes shear fracture. For σn < 0, the shear stresses τnt and τn1 (or just one of them) have to 
cause fracture against an additional fracture resistance, which increases with increasing |σn| like 

Figure 7.5.7, The concept of fracture plane in UD lamina 
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an internal friction. Puck proposed a simple equation describing this effect, which resembles the 
fracture hypothesis by Mohr-Coulomb, 
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where )(

||
−

⊥p  is the slope of the (σn, τnl) on the fracture envelope for σn ≤0, at σn =0; )(−
⊥⊥p  is the 

slope of the (σn, τnt) on the fracture envelope for σn ≤0, at σn =0. The two p parameters are 
equivalent to the coefficients of friction (η) used by Sun’s criterion (Eqn. 7.5.4.3).  
 
(i) Fracture resistances 
Eq. (7.5.5.6) and (7.5.5.7) are the failure criteria for the inter-fiber fracture (or so-called matrix 
cracking) under tensile and compressive normal stress on the fracture plane. Nevertheless, these 
two failure criteria are not convenient to use directly due to the difficulty in obtaining the 
strength allowables on the fracture plane and the p parameters. If a stress σn > 0 is acting alone 
and fracture occurs in its stress action plane, the fracture resistance AR )(+

⊥  equals the tensile 
strength YT. This is the case with the UD materials of laminates examined here, which does not 
mean that it is so in general. However, a τ┴║ shear stressing always causes fracture only in its 
action plane; thus, we can write AR ||⊥  = S21. With AR⊥⊥ , the situation is totally different for the 
materials to be analyzed. A shear stressing τ┴┴ which acts alone does not lead to shear fracture in 
its action plane, but to tensile fracture in a plane which is inclined by 45o to the action plane of 
the shear stress. Up to now, no experiment is known which would allow a direct measurement of 
the fracture resistance AR⊥⊥  against fracture caused by a τ┴║ stressing. Hence, AR⊥⊥  must be 
derived from the transverse compressive strength, YC, assuming a mathematically formulated 
master fracture surface. For the friction parameters, p, in Eqn (7.5.5.7), in general, )(

||
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⊥p  is fitted 
to the experimentally deduced slope of the (σ22, τ12) fracture envelope for σ22 ≤ 0 at the point σ22 
= 0, and )(−

⊥⊥p  can be calculated from Puck’s empirical relation AA RRpp ||
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(ii) Fracture planes 
Another issue needs to be solved before the failure criteria are used is determining the angle of 
fracture plane. In general the angle of the fracture plane parallel to the fiber is not known in 
advance which one of the infinite number of possible fiber parallel planes will become the 
fracture plane, when the load reaches the fracture load. It certainly is the one with the highest 
numerical value of the angle dependent failure index fE(IFF). That means that one has to search for 
[fE(IFF)(θ)]max = fE(IFF)(θfp), where θfp is the angle for fracture plane. To identify it, one has to 
compare the numerical values of the computed fE(IFF)(θ) for a sufficiently high number of values 
for θ between -90o and +90o. But for a plane state of stress (σ11, σ22, τ12), Puck developed an 
analytical solution for θfp. 
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(iii) Degradation models 
Puck also took into account the effect of progressive damage occurring in laminates and 
consequently developed degradation models for the failure criteria.  One of the degradation 
models assumes equal degradation of all fracture resistances in the inter-fiber fracture conditions 
due to single fiber failure. Puck used a weakening factor fw to account for this effect and 
proposed an empirical relation for fw, which is given as 
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where n is the empirical degradation exponent; Puck uses n = 8 for relatively high fracture strain 
matrix, otherwise, uses n = 6.  
 
In addition to the degradation model for fracture resistance, Puck also proposed a degradation 
model to realistically cover the progressive reduction of certain transverse stiffnesses of the 
unidirectional ply as a result of increasing crack density. Opening cracks are regarded as if they 
were ‘smeared’, and their global effect on the secant moduli E2s and G12s as well as the major 
Poisson's ratio v12 are described by diminishing all three quantities with a reduction factor η, 
which is determined experimentally. 

 
(iv) List of IFF failure criteria in 2D and 3D stress states 
To facilitate the failure criteria, Puck simplified Eqns. (7.5.5.6) and (7.5.5.7) and also took into 
account for all of the issues mentioned above with sophisticated mathematical treatment and 
many empirical relations. Table 7.5.1 summarizes the simplified failure criteria together with 
relations for the parameters for the inter-fiber failure under the plane stress state (σ11, σ22, τ21) 
and three-dimensional stress state (σ11, σ22, σ33, τ12, τ13, τ23), respectively. 

 

Table 7.5.1, Summary of Puck IFF criteria for plane stress case 

IFF failure modes and criteria 
 

Parameters 

IFF on (σ22,τ12) plane as σ22 ≥ 0 (Mode A, θfp = 0) 
 

DT

T

S
p

YS
Yp

S 1

11

12

22)(
||

2

22

2

12

)(
||

2

12

12 11
σ
σσστ

−=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
⊥

+
⊥  

 
 

0 curve, ),( of 221222

022

12)(
||

22

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=

+
⊥ στσ

σ
τ

σ
d
dp  

 
 
 
 

IFF on (σ22,τ12) plane as 

C1

A

1

2
2 τ

R
τ
σ0 and0σ

22

2
2

⊥⊥≤≤<  for (Mode B, θfp = 0)  

 

( ) ( )
D

pp
S 1

11
22

)(
||

2
22

)(
||

2
12

12

11
σ
σσστ −=⎟

⎠
⎞⎜

⎝
⎛ ++ −

⊥
−

⊥  

 

0 curve, ),( of 221222

022

12)(
||

22

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=

−
⊥ στσ

σ
τ

σ
d
dp  



 

205 

            
 

)(
1212

12

)(
||

)(

12

)(
||)(

||

12
)(

21

121
2)1(2

−
⊥⊥

⊥⊥−
⊥

−
⊥⊥

−
⊥−

⊥
−

⊥⊥
⊥⊥

+=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

+
=

pS

S
Rpp

S
Yp

p
S

p
YR

C

A

CCA

τ

 

IFF on (σ22,τ12) plane 

A
C1

2

1
2

2

A
w

fp

R
τ

σ
τ0 and0σas

) 
)σ(

Rfcosθ C, Mode

⊥⊥

⊥⊥

≤≤<

−
=

2

2

2
2

2

    

 (
 

D

C

C

Y
YSp 1

1

2

2

2

2

21
)(

21 1
)()1(2 σ

σ
σ

στ
−=

−⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ −

⊥⊥

 

0 curve, ),( of 22122

022

12)(
||

22

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=

−
⊥ στσ

σ
τ

σ
d
dp  

)(
1212

12

)(
||

)(

12

)(
||)(

||

12
)(

21

121
2)1(2

−
⊥⊥

⊥⊥−
⊥

−
⊥⊥

−
⊥−

⊥
−

⊥⊥
⊥⊥

+=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

+
=

pS

S
Rpp

S
Yp

p
S

p
YR

C

A

CCA

τ

 

 
 

Table 7.5.2, Summary of Puck IFF criteria for 3D stress case 

IFF failure modes and criteria 
 

Parameters 

For σn(θ) ≥ 0 
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For σn(θ) < 0 
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7.5.5.3 Parameters in Puck’s failure criteria 
There are seven independent parameters that must be determined before Puck’s inter-fiber 

failure criteria are used. Those parameters include three strength parameters, )(
||

)( ,, −
⊥⊥

+
⊥ RRR  of the 

UD ply, and four inclination parameters )()()(
||

)(
|| ,,, +

⊥⊥
−

⊥⊥
+

⊥
−

⊥ pppp , which are the slopes at σn = 0 of some 
contour lines of the master fracture body. In [7.7] Puck describes the details of how to find those 
parameters for a particular material system. The procedure of determining those parameters is 
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rather complicated and relies on the author’s personal experience and preference. The relations 
used for determining those parameters are given in the Table 7.5.1 and 7.5.2. In particular, the 
inclination parameters must be obtained by taking slopes from experiment curves. Table 7.5.3, 
copied here from [7.7], summarizes these parameters for the Glass-fiber/epoxy (GRP) and 
Carbon-fiber/epoxy (CFRP) material systems. 
 

Table 7.5.3, Strength values and inclination parameters for typical FRP in Puck failure 
criteria 

 )(+
⊥R  

[N/mm2] 
⊥R  

[N/mm2] 

)(−
⊥R  

[N/mm2] 

)(
||
+

⊥p  
[-] 

)(
||
−

⊥p  
[-] 

)(−
⊥⊥p  

[-] 

)(+
⊥⊥p  

[-] 
GRP 45 65 145 0.3 0.25 0.20~0.25 0.20~0.25 
GFRP 50 100 230 0.35 0.30 0.20~0.30 0.20~0.30 

 
The parameters for other material system however must be determined by following Puck’s 
procedure and referring to his experience and experimental results. 
 

7.5.5.4 Overall performance of Puck failure criteria and its adaptability to 
industry 

In the WWFE, Puck theoretical failure envelopes for the unidirectional laminae were in very 
good agreement with the experimental results. The predicted final failure envelopes and 
stress/strain curves for the multi-directional laminates were also generally in good agreement. 
Discrepancies between theory and experiment emerged in the test cases where large non-linear 
deformations were present. In these instances, predictions of final failure strain were much 
smaller than the observed values and the failure envelope was not closed. Overall, the results 
show that the Puck theory captures most features of the experimental results and therefore 
appears to be one of the best currently available. 
 
However, Puck’s failure theory is not easily implemented or used. First of all, Puck’s failure 
theory contains a very sophisticated treatment of failure phenomenon. Some of those treatments 
are based on empirical relations and personal experience, instead of physically based 
phenomena, making the theory difficult to understand.  Secondly, the material parameters for 
Puck’s failure theory are not derived from standard material tests.  Therefore they are difficult to 
quantify with a particular material system without considerable experience and testing that is not 
currently done in industry. While the failure theory has good predictive capability, these factors 
will make it hard to gain industry acceptance. 
 

7.5.6 LaRC03 failure theory 
The LaRC03 failure theory was proposed by Davila and Camanho [7.25] at NASA Langley 
Research Center to describe the failure phenomena of fibrous composite materials.  A typical 
failure envelope from this method is shown in Fig. 7.1.1 where six unique failure mechanisms 
are identified.  The theory was developed using micromechanical analysis combined with the 
concepts of Hashin’s failure modes, Sun’s ‘in-situ’ strength, Mohr-Coulomb’s internal 
compressive friction and Puck’s action plane. Most importantly, LaRC03 theory uses standard 
(MIL-HDBK) test data, which are readily available to industry. The current version of the 
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LaRC03 failure theory is applicable to FRP in-plane stress, a more advanced version for FRP in 
3D stress state is in under development [7.26].  

7.5.6.1 Matrix failure 
LaRC03 introduces a new set of criteria for matrix fracture (called Inter-Fiber Failure by Puck). 
In the case of matrix tension, the fracture planes are normal to the plane of the plies and parallel 
to the fiber direction. For matrix compression, however, the plane of fracture may not be normal 
to the ply and the angle of the fracture plane that is calculated using Mohr-Coulomb theory. 

 

7.5.6.1.1 Criterion for matrix failure under transverse compression (σ22 < 0) 
Puck’s failure theory proposes that the shear strength increases on the fracture plane of the 
matrix due to internal friction under compression. In LaRC03, the effective shear stress on the 
fracture plane increases instead of the shear strength due to the internal friction. The effective 
stress τeff, which is the actual shear stress on the fracture plane, is related to the stresses τT and σn 
acting on the fracture plane by the expression n

T
eff ησττ += , where σn is the normal stress on the 

fracture plane, η is called the coefficient of internal friction and it is assumed to be a material 
constant. 
 
In general, the fracture plane is subjected to transverse as well as in-plane stresses, in which case 
the effective stresses must be defined in both orthogonal directions.  
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                                                           (7.5.6.1) 

 
where the terms ηT and ηL are referred to as coefficients of transverse and longitudinal influence, 
respectively, and the operand <x> = x if x ≥ 0; otherwise <x> = 0. Matrix failure under 
compression loading is assumed to result from a quadratic interaction between the effective shear 
stresses acting on the fracture plane. The failure index for a failure mode is written as an equality 
stating that stress states that violate the inequality are not physically admissible. The matrix 
failure index (FIM) is 
 

LaRC03 #1                                            1
22

≤⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= L

is

L
eff

T

T
eff

M SS
FI

ττ
                                    (7.5.6.2) 

 
where ST and SL

is are the transverse and longitudinal shear strengths, respectively. The subscript 
“is” indicates that for general laminates, the in-situ longitudinal shear strength rather than the 
strength of a unidirectional laminate should be used. The constraining effect of adjacent plies 
substantially increases the effective strength of a ply. It is assumed here that the transverse shear 
strength ST is not subjected to ‘in-situ’ effects. The effective stresses for an angle of fracture 
plane between 0o and 90o can be written in terms of the plane stress components and fracture 
angle, as 
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The coefficients of influence ηT and ηL can be obtained from the case of uniaxial transverse 
compression (σ22 < 0, τ12 = 0). At failure, the in-plane compressive stress is equal to the matrix 
compressive strength, so ηT  can be solved from 
 

)cos(sincos αηαατ TCTT
eff YS −==                                              (7.5.6.4) 

 
as 
 

)2tan(
1

0α
η −

=T                                                              (7.5.6.5) 

 
where α0 is the fracture angle that maximizes the effective transverse shear stress. Puck 
determined that when loaded in transverse compression, most unidirectional graphite/epoxy 
composites fail by transverse shear along a fracture plane oriented at α0=53°±2°. Therefore, the 
coefficient of transverse influence is in the range 0.21≤ ηT≤0.36. Note that if the fracture plane 
were oriented at α0=45°, the coefficient of transverse influence would be equal to zero. 
 
The transverse shear strength ST is a material property that is difficult to measure experimentally. 
However, ST can be obtained from Eq. (7.5.6.4) by substituting Eq. (7.5.6.5).  
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For a typical fracture angle of α0=53° gives ST=0.378YC. The coefficient of longitudinal 
influence, ηL, can be determined from shear tests with varying degrees of transverse 
compression. In the absence of biaxial test data, ηL can be estimated from empirical coupling of 
the longitudinal and transverse shear strengths, similar to that proposed by Puck.  The expression 
for ηL used in the LaRC03 formulation is: 
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The key to predicting matrix compressive failure is to determine the fracture plane angle, α. 
Under combined loads, the angle of the fracture plane is the one that maximizes the failure index, 
FI, in Eqn. (7.5.6.2). In LaRC03, the fracture angle is obtained by searching for the maximum of 
the failure index numerically (Similar strategy used by Puck for 3D IFF criterion) over the range 
of possible fracture angles: 0 < α < α0. Fig. 7.5.8 shows the matrix failure envelopes at various 
fracture angles for a unidirectional E-Glass/LY556 composite in the plane of transverse 
compression and in-plane shear. As is seen in the figure, the fracture angle that maximizes the FI 
for small transverse stresses is α=0°. When the applied transverse stress σ22 has a magnitude 
equal to approximately 2/3 of the transverse compressive strength, YC, the angle of the critical 
fracture plane switches from α=0° to α=40°, and then rapidly increases to α= 53o, the angle of 
fracture for uniaxial transverse compression. 
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7.5.6.1.2 Criterion for matrix failure under transverse tension (σ22 > 0) 
The matrix failure of composites under transverse tension is believed to result from catastrophic 
propagation of matrix cracks, which may originate from manufacturing defects. Many failure 
criteria only provide phenomenological models to describe this failure event, but do not probe 
into the micromechanism of the failure, such as Tsai, Hashin and even Puck.  LaRC03 proposes 
an approach based on fracture mechanics to analyze the critical condition for crack propagation 
in a UD ply, which is either embedded in a laminate or unconstrained.  
 
In-situ strength 
Like Sun’s linear failure theory, LaRC03 considered the ‘in-situ’ effect occurring in laminated 
composites as it predicts matrix cracking under the presence of both in-plane shear and 
transverse tensile stresses. The ‘in-situ’ effect, originally observed in tensile tests of cross-ply 
glass fiber reinforced plastics, is characterized by higher transverse tensile and shear strengths of 
a ply when it is constrained by plies with different fiber orientations in a laminate, when 
compared with the strength of the same ply in a unidirectional laminate. The ‘in-situ’ strength 
also depends on the number of plies clustered together, and on the fiber orientation of the 
constraining plies. 
 
In-situ strengths can be obtained from experimental [7.23, 7.25, 7.27] and analytical methods 
[7.28, 7.29, 7.30]. As we recall, Sun has used the ‘in-situ’ tensile transverse and shear strength to 
be 1.5 times those measured from unidirectional laminates for the entire test case based on his 
experience. In LaRC03, the ‘in-situ’ strengths are calculated using Dvorak’s model [7.28] for the 
propagation of cracks in a constrained ply. The results are given in the following. 

 

Fig. 7.5.8, Matrix failure envelopes for a typical unidirectional E-glass/epoxy 
lamina subjected to in-plane transverse compression and shear loading. 
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Based on the Dvorak’s model, the mixed-mode energy release rate (ERR) for a crack growth in a 
constrained UD ply under in-plane shear and transverse tensile stresses, as shown in Fig. 7.5.9, 
are given by 
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where T denotes transverse direction and L denotes longitudinal direction, as shown in Fig. 7.5.9. 
The parameters ηi and ξi i=I, II are the stress intensity reduction coefficients for propagation in 
the transverse and longitudinal directions, respectively. These coefficients account for the 
constraining effects of the adjoining layers on crack propagation: the coefficients are nearly 
equal to 1.0 when 2a0<<t, and are less than 1.0 when a0≈t. Considering that a transverse crack 
can promote delamination between the plies, Dvorak et al. suggested that the effective value of ηi 
can be larger than obtained from the analysis of cracks terminating at the interface, and 
suggested the use of ηi = ξi =1. The parameters Λ0

jj are given as: 
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Further, the ERR in Eq. (7.5.6.8) can be decomposed into mode I and mode II, as  
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The corresponding fracture toughnesses are given as 
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LaRC03 failure criterion for matrix cracking under transverse tension is established based on 

Hahn’s mix-mode criterion [7.31] for crack propagation. It is given as 

Fig. 7.5.9, A crack embedded in a constrained UD ply (Dvorak’s model) 
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where g is the ratio of fracture toughness of mode I to mode II, 
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Puck, the criterion presented in Eqn. (7.5.6.14) contains both linear and quadratic terms of the 
transverse normal stress and a quadratic term of the in-plane shear stress. In addition, if g =1 
Eqn. (7.5.6.14) reverts to Sun’s criterion for transverse matrix cracking under both in-plane shear 
and transverse tension, where the ply strengths are the ‘in-situ’ strengths. 
 
The ‘in-situ’ strength used in LaRC03 #2 can be obtained from either experiments or analytical 
solutions. The analytical solution can be derived from Eqns. (7.5.6.12)-(7.5.6.13). For thick 
embedded plies, (e.g. the ply thickness is approximately 0.7 mm [7.28]), cracks will grow 
unstably in the transverse direction because the energy release rate for the crack slit is twice as 
large in the transverse direction as it is in the longitudinal direction, which can be seen in Eqs. 
(7.5.6.10) and (7.5.6.11). Therefore, the ‘in-situ’ strength for thick embedded plies can be solved 
from Eqn. (7.5.6.12), as 
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In case of thin plies, which are usually referred to as one having a thickness smaller than the 
typical defect, t < 2a0, crack defects can only grow in the longitudinal (L) direction, or trigger a 
delamination between the plies. The ‘in-situ’ strengths can be calculated from the components of 
the fracture toughness as: 
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where it can be observed that the ‘in-situ’ strengths are inversely proportional to t1/2 . The 
toughness GIc (L) and GIIc(L) can be assumed to be the values measured by standard Fracture 
Mechanics tests, such as the DCB for mode I and the ENF test for mode II. 
 
In the case of unidirectional laminates, which is a particular case of thick plies, the ‘in-situ’ 
strength is given in terms of tensile and shear strengths measured from unidirectional laminate 
tests. 
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7.5.6.2 Fiber failure 

7.5.6.2.1 Criterion for fiber tension failure 
Fiber breakage under longitudinal tension has been regarded to occur when the longitudinal fiber 
stress or the strain reach the limit. Puck has made an attempt to distinguish the true fiber stress 
and lamina stress, using an approximate micromechanical analysis. As a result, Puck’s model 
defined an “effective” strain acting along the fibers as the criterion judging fiber failure.  
Similarly, the LaRC03 criterion for fiber tension failure used a non-interacting maximum 
allowable strain criterion that is simple to measure and is independent of fiber volume fraction 
and Young’s moduli. The LaRC03 failure index for fiber tensile failure is given as: 
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11 == TFFI
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7.5.6.2.2 Criterion for fiber compression failure 
The real difficulty in prediction of fiber failure has been encountered when the fibers were 
subjected to longitudinal compression. Sun and Hashin used the maximum stresses in fiber 
direction for the criterion of fiber failure, but their theories did not take into account the effect of 
in-plane shear which could considerably reduce the compressive strength of lamina due to the 
fiber kinking induced. Puck tried to solve this problem by adding an empirical term of shear 
strain in the original form of fiber compressive failure criterion, but that empirical term does not 
provide a micromechanics basis for the failure mechanism. 
 
LaRC03 established the failure criterion for fiber compression based on recent development of 
micromechanical theories of fiber compressive failure. Those studies showed that compressive 
failure of aligned fiber composites results from collapse of the fibers due to shear kinking and 
damage of the supporting matrix (see the representative works of Fleck [7.32], Soutis [7.33], and 
Shultheisz [7.34]). Fiber kinking occurs as shear deformation leads to the formation of a kink 
band.  Argon [7.35] found that the fiber misalignment leads to shearing stresses between fibers 
that rotate the fibers, increasing the shearing stress and leading to instability. Several authors 
[7.36, 7.37] have considered that misaligned fibers fail by the formation of a kink band when 
local matrix cracking occurs. Potter et al. [7.38] assumed that additional failure mechanisms that 
may occur under uniaxial longitudinal compression, such as crushing, brooming, and 
delaminations, are essentially triggered by matrix failure. 
 
It turns out that matrix failure around misaligned fibers is the major reason for fiber compressive 
failure. Thus, LaRC03 attempted to establish a matrix failure criterion in misaligned fiber frames 
when fibers are in compression. As shown in Fig. 7.5.10, the imperfection in fiber alignment is 
idealized as a local region of waviness. The misaligned fiber frames are characterized by 
misalignment angle ϕ. 
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The ply stresses in the misalignment coordinate frame m shown in Fig. 7.5.10 are 
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The total misalignment angle ϕ can be decomposed into an initial (constant) misalignment angle 
ϕ0 that represents a manufacturing imperfection, and an additional rotational component ϕR that 
results from shear loading. The angles ϕ0 and ϕR can be calculated using small angle 
approximations and Eqn. (7.5.6.19). 
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where ϕC is the total misalignment angle for the case of axial compression loading only (σ11 = -
XC and σ22 = σ12 = 0), which is given as 
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The total misalignment angle ϕ then becomes 
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Finally, fiber compression failure by formation of a kink band is predicted using the stresses 
from Eqn. (7.5.6.19) and the failure criterion for matrix tension or matrix compression. For 
matrix compression (σ22

m < 0), the criterion is the Mohr-Coulomb criterion given in Eqn. 
(7.5.6.2), with α=0° and τT

eff = 0. The criterion for kinking becomes: 
 

Fig. 7.5.10, misaligned fibers under compression 
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For fiber compression with matrix tension (σ22

m > 0), the transformed stresses of Eqn. (7.5.6.19) 
are substituted into the matrix tensile failure criterion given in Eqn. (7.5.6.14) to yield the 
following criterion for fiber kinking: 
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This criterion has a good correlation with those proposed by Edge, Sun and others. For example, 
in the case of σ22 =0, the fiber failure criterion for Eq. (7.5.6.24) becomes 
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The linear interaction between σ11 and σ12 in Eq. (7.5.6.16) is identical to the form used by Edge 
[7.39] for the WWFE. For T300/914C, Edge suggests using an empirical value of k =1.5. 
However, Edge also indicates that other researchers have shown excellent correlation with 
experimental results with k = 1. Using the WWFE strength values of XC=900 MPa, SL=80 MPa, 
YC=200 MPa, an assumed fracture angle in transverse compression of 53°, we get: ηL=0.304, 
ϕC= 5.3°. With the approximation ϕ≅ϕC, Eq. (7.5.6.25) gives k=1.07. 

 

7.5.6.3 Matrix Damage in Biaxial compression 
In the presence of high transverse compression combined with moderate fiber compression, 
matrix damage can occur without the formation of kink bands or damage to the fibers. The 
matrix fracture plane has different angles with variation of ratio of transverse compression to 
fiber compression.  Thus, the matrix damage criterion can be calculated using the same matrix 
cracking criterion but in the misaligned frame, as shown in Fig. 7.5.10. It can be written as 
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where the effective shear stresses in the misaligned frame are defined as 
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7.5.7 Strain Invariant Failure Theory (SIFT) 
Recently, Gosse [7.2, 7.3, 7.40] has proposed a new failure theory called Strain Invariant Failure 
Theory (SIFT) for damage initiation in polymer composites. Based on the experimental 
investigation, SIFT attributes the damage initiation to be either dilatational or distortional 
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deformation in the matrix or in the fiber.  Implementation of SIFT requires resolution of stresses 
at the micromechanics level between the matrix and fiber phases.  With respect to unidirectional 
tape composite product forms, there are two critical strain invariants that dictate damage (or 
failure) initiation within the matrix phase,  
 

criticalJJ 11 ≥  and critical
equivalentequivalent εε ≥                                       (7.5.6.28) 

 
and one critical strain invariant that dictates damage (or failure) initiation within the fiber phase, 
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The strain invariants are: 
 

3211 εεε ++=J  
 
and 
 

])()()[(5.0 2
32

2
31

2
21 εεεεεεε −+−+−=equivalent  

 
where ε1, ε2, and ε3 are the principal strains.  
 
Using stresses at the micromechanics level, SIFT attempts to predict ply strength for different 
load combinations of biaxial and shear. At this time, it does not provide a superior method of  
computing transverse allowables for 90° tension loads. It also does not address the problem of 
determining the 90° tension allowable when the ply is embedded between different layups, that 
is, dilational matrix cracking. Finally, it provides no progressive failure capability. So when there 
is good test data for the combination of loads on a ply, then should use that.   Therefore, if 
reliable and complete test data is available at the ply level, other failure methods as described 
above may provide more accuracy.  However, of only fiber or matrix allowable data is available, 
SIFT can provide useful results.  
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7.5.8 Summary Conclusions 
 
This report reviews the up-to-date best failure theories for FRP, including Hashin, Sun, Tsai, 
Zinoviev, Puck and LaRC03. In the following, we summarize the features of LaRC03 and 
compared it with Hashin, Sun, Tsai, Zinoviev, Puck, max stress and max strain failure theories. 
 

Table 7.5.4, Comparison of up-to-date best failure theories for FRP 
  Hashin Sun (L) Tsai Zinoviev Puck LaRC03 Max 

stress 
Max 
strain 

Physically 
based 

yes yes no no yes yes no** no** 

Input 
parameters 

standard Non-
standard 

standard standard Non-
standard 

standard standard standard 

Fe
at

ur
es

 

Damage 
model 

N/A available available Available Available 
(Empirical)

N/A N/A N/A 

Fiber 
tension 

fair fair N/D* N/D Very good Very 
good 

N/D N/D 

Fiber 
compression 

poor poor N/D N/D good good N/D N/D 

Matrix 
tension 

Very 
good 

Very 
good 

N/D N/D Very good Very 
good 

N/D N/D 

Pr
ed

ic
at

iv
e 

ca
pa

bi
lit

y

Matrix 
compression 

poor poor N/D N/D good good N/D N/D 

UD lamina fair good good good good good fair fair 
Multi-
directional 
laminates 

N/A fair poor-IFA 
good-
FFA  

good good N/A poor poor 

W
W

FE
 c

as
es

 

Cross-ply 
laminate 

fairB good Good 
after 
revised 

good good goodB fairB fairB 

A.  IF stands for initial failure; FF stands for final failure 
B.  The assessment is based on prediction for Shuart’s experiment  
*    N/D stands for “not distinguished”. 
**  Max stress and max strain theories are considered non-physically based because they do 

not indicate the actual failure mechanism.  That is, these theories give no indication if a 
failure is due to fiber breakage, matrix crack propogation, fracture plane shear, etc. 

 
It can be seen that Puck and LaRC03 show good predictive capability due to its physically based 
model for different failure modes and good accuracy. However, LaRC03 shows better 
adaptability to industry because of its readily available input parameters. As such, LaRC03 was 
implemented into HyperSizer and the detailed procedure is addressed in this report. The Newton-
Raphson method was used to solve the nonlinear equations in LaRC03 and thus to generate the 
failure envelopes. This method proves to be much more efficient and accurate as more data 
points are taken. LaRC03 is expected to be continuously modified by NASA and the new 
updates will also be verified and implemented into HyperSizer. 

7.6 Blank Section 
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7.7 Implementation of LaRC03 Failure Theory 
 
Two issues have to be solved before LaRC03 failure criteria are implemented: 1) the availability 
and credibility of input parameters; 2) numerical methods for generation of LaRC03 failure 
envelopes. These two issues will be discussed below. 

 

7.7.1 Input parameters for LaRC03 failure criterion 
Eleven unidirectional material parameters are required for input to the six LaRC03 failure 
criteria, identified in Fig. 7.1.1 and described in Section 7.5. These parameters are listed in Table 
7.7.1. 

 

Table 7.7.1, Required UD material properties for LaRC03 

E1 Longitudinal Young’s modulus 
E2 Transverse Young’s modulus 
G12 In-plane shear modulus 
v12 In-plane Poisson ratio 
XT Longitudinal tensile strength 
XC Longitudinal compressive strength 
YT Transverse tensile strength 
YC Transverse compressive strength 
SL In-plane shear strength 
GIC(L) Mode I fracture toughness 
GIIC(L) Mode II fracture toughness 

 
Two other material parameters are optional. They are 

Table 7.7.2, Optional UD material parameters for LaRC03 

α0 Fracture angle of matrix compressive failure 
ηL Longitudinal coefficient of influence of internal friction 

 
where α0 can be entered as 53o or extracted from test data; ηL can be calculated from Eqn. 
(7.5.6.7) or from test data. 
 
The material parameters in Table 7.7.1 are the common unidirectional lamina data, which can be 
obtained from standard tests. Most of the data are also available in various composite design 
handbooks, such as MIL-HDBK-17. Among all the material data listed in Table 7.7.1, only the 
fracture toughness can be obtained from standard fracture mechanics tests. For example, GIC can 
be measured from DCB test, and GIIC can be measured from ENF test. However, compared to 
other material strength of UD ply, the fracture toughness are not well collected in composite 
design handbooks. In many cases, only GIC is provided, but no data is released for GIIC. In such 
situations, GIIC can be calculated from certain mixed-mode crack propagation criterion. NASA 
[7.41] has recently reviewed currently used mixed-mode delamination failure criteria and 
compared those to experimental data, including power law, exponential Hackle, exponential 
KI/KII, linear interaction, bilinear criteria, etc. Those delamination criteria can be used to 
calculate GIIC once GIC is known, or vice versa. In particular, Davila [7.1] recommended using 
power law and B-K criteria. They are given as 
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where the exponent α and β in the power law are usually selected to be either 1 or 2. And the B-
K criterion is established in terms of the single-mode fracture toughness GIC and GIIC and 
parameter γ. 
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where GT is the total energy release rate. 
 
Another concern is about the ‘in-situ’ strength of the embedded lamina. There are two ‘in-situ’ 
strengths used in LaRC03, one is the in-plane shear strength L

isS , another is transverse tensile 
strength T

isY . The ideal way of obtaining the ‘in-situ’ strengths is to measure them in the tests 
directly. However, this kind of information is rare for a particular material system.  As a result, 
LaRC03 provides analytical formulae to estimate the L

isS  and T
isY  by using the fracture toughness 

of material in Eqns. (7.5.6.8-7.5.6.17).  
 

 
In LaRC03, choosing different values of in-situ strengths has a great impact on the predicted 
failure stresses. Fig.7.7.1 shows predicted strength by LaRC03 for the cross-ply [±θ]s AS4/3502 
laminate, using the in-situ shear strengths obtained from three different resources: the test, the 
formulae given by LaRC03 and the data of the UD ply strength given in Mil-Hdbk-17-2E. The 
in-situ shear strength from test is 95.1 MPa, as reported by Shuart [7.42]. The data of the UD ply 

Fig. 7.7.1, Compressive strength of [+/-θ]s AS4/3502 predicted by LaRC03 using different 
values of in-situ strength . 
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strength is found in Mil-Hdbk-17-2E, as 102 MPa, and the in-situ strength derived from the 
LaRC03 formulae is Sis = 114.8 MPa (GIc= 82 J/m2, GIIc = 120.5 J/m2). The results in Fig.7.7.1 
show that the predicted strengths using the test Sis = 95.1 MPa correlate the best with the 
experimental results, while the one from LaRC03 formulae generates relatively larger error. 
 
The above example shows that the in-situ strengths estimated by LaRC03 formula are less 
accurate, so that they cause errors in strength prediction of the laminate. This may result from the 
following reasons: 1) the strength predicted by fracture mechanics was developed accounting for 
residual thermal stresses, which have not yet been implemented in the code; 2) In the data, it is 
not clear if the GIIc given is GIIc(L) or GIIc(T); 3) The nonlinearity of shear may play an important 
role. To count for those difficulties, some empirical relations have been proposed. For example, 
Sun has suggested taking ‘in-situ’ tensile transverse and shear strength to be 1.5 times those 
measured from unidirectional laminates for the WWFE test cases base on his experience. Davila 
[7.26] also suggested that for internal plies with typical ply thicknesses of 0.13 mm, one can use 
the following empirical relations: LL

is SS 5.1=  and TT
is YY 2= . If the plies are thicker, the ‘in-situ’ 

strength decreases by the square root of the thickness. The research on how to improve the 
prediction of the ‘in-situ’ strength is still ongoing at NASA.  The implementation of LaRC03 in 
HyperSizer uses the user input values for UD plies as the in-situ strength. 

7.7.2 Methods of generation of LaRC03 failure envelops 
LaRC03 failure theory contains six failure criteria for different failure modes. The methods for 
generating failure envelopes for these six failure criteria are very different. Particularly, the 
method for LaRC03#1, #2 and #3 is quite straightforward, while the method for LaRC03 #4, #5 
and #6 is rather complicated. In the following, we will address the details of the method for 
LaRC03 #4, #5 and #6 in particular. 

 

7.7.2.1 Newton-Raphson method 
The equations for generating the failure envelopes of LaRC03 criteria #4, #5 and #6 are 
nonlinear in nature (See section 7.5.6). As such, the nonlinear solution procedure could be used 
to solve these equations. Newton-Raphson method proves to be an effective and efficient method 
for this type of problem. In the following, we briefly describe Newton-Raphson method for the 
one-dimensional case.  
 
Suppose we have a non-linear equation f(x) with one unknown x, 

 
( ) 0=xf                                                                 (7.7.2.1) 

 
If an initial approximation is given, i.e., x0 = starting value, then the solution of the equation can 
be found through the following iteration 
 

)(/)( 111 −−− ′−= jjjj xfxfxx    j = 1,2,3…n                           (7.7.2.2) 
 

The process is iterated until it converges, usually until |xj-xj-1| is smaller than the accuracy 
wanted in the solution, or until the f(xj) is sufficiently close to 0 (general criteria are difficult to 
define). Convergence may, of course, not be obtained if the first approximation was poor (again 
this is difficult to define in general).  
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Newton-Raphson method for the scalar case has a very simple geometrical interpretation: it is the 
extrapolation to 0 along the tangent to the graph of f(x). The error after iterations is proportional 
to the square of the error before iterations, as shown in Eqn. (7.7.2.3). Once the relationship 
between en+1 and en is known then the order of the iterative scheme (which is basically the speed 
of convergence) is the power of en. Thus, Newton-Raphson is a second order scheme and we 
have very fast convergence.  
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−≈+                                                          (7.7.2.3) 

7.7.2.2 Equations for generation of failure envelopes 
The methods for generating failure envelopes of criteria #4, #5 and #6 are basically the same. As 
a result, we choose LaRC03 #5 as an example to describe the method.  In the σ11-σ22 plane (same 
for other planes), the points (σ11, σ22) can be also expressed in the polar coordinate system, as 
shown in Fig. 7.7.2. 

 
tr sin22 =σ    and   tr cos11 =σ                                              (7.7.2.4) 

 
where r is the module of projection from the origin to the point on the failure envelope; t is  the 
angle of the projection. Thus, if the angle is given, the point on the envelope can be defined only 
when the r is known. 

 
Eqns. (7.7.2.5)-(7.7.2.9) are the complete system equations for generating failure envelopes of 
LaRC03 #5 in the σ11-σ22 plane.  
 

trtr sin),(22 =σ    and   trtr cos),(11 =σ                                           (7.7.2.5)                         
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Fig. 7.7.2, Polar coordinates of a point in the failure envelope 
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If the projection angle t is given, apparently, these equations, which are one-dimensional 
nonlinear equations about the unknown r, can be solved by using Newton-Raphson method, as 
described by Eqn. (7.7.2.1-7.7.2.2). Noted that the Newton-Raphson procedure needs to calculate 
the derivatives of all the variables involved in the criteria with respect to the unknowns. In the 
following, the expressions of the derivatives with respect to unknown r are given. 
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dr

d cos11 =
σ     and    t
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d sin22 =

σ                                            (7.7.2.15) 

 
The Newton-Raphson method proved to be very efficient solving the above nonlinear equations, 
particularly when a lot of points in the failure envelopes need to be calculated.  
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7.8 Implementation of Hashin Failure Theory 
 

Two issues have to be solved before Hashin failure criteria (2D and 3D versions) are 
implemented: 1) the availability and credibility of input parameters; 2) numerical methods for 
generation of failure envelopes and calculation of margins of safety (MS). These two issues will 
be discussed below. 

 

7.8.1 Input parameters for Hashin failure criterion 
 

Six unidirectional material parameters are required for the input of Hashin failure criteria. They 
are listed in Table 7.8.1. 

 

Table 7.8.1, Required UD material properties for Hashin failure criteria 

XT Longitudinal tensile strength of UD lamina 
XC Longitudinal compressive strength of UD lamina 
YT Transverse tensile strength of UD lamina 
YC Transverse compressive strength of UD lamina 
S In-plane shear strength of UD lamina 
ST  the interlaminar shear strength of UD lamina 

 
The material parameters in Table 7.8.1 are common unidirectional lamina data, which can be 
obtained from either standard tests or various composite design handbooks, such as MIL-HDBK-
17. It is noticed that in both 2D and 3D versions of Hashin criteria, there are two shear strengths 
used: in-plane shear strength S and interlaminar shear strength ST. In practical design, S and ST 
are sometimes not distinguished for UD fibrous lamina since the two shear strengths mainly 
result from the same failure mechanism, i.e., the failure of resin between fibers. However, it can 
be seen that the error will be introduced with respect to Hashin 3D failure criterion, if S = ST. 
Thus, there is a concern about the relation between the actual values of S and ST. Of course, this 
is not a problem if the value of ST is known for a particular composite. Paris [7.21] did a 
parametric study in terms of the relative values of ST with respect to S, taking S as the value 
corresponding to a particular material, AS/3501.  In the study, Paris took different values of k in 
the relation: ST = k S, where k has been taken, for the purpose of covering the whole range of 
possible situations, with values greater and smaller than 1. It was found that if ST is smaller than 
S, it leads to conservative predictions. In addition, for a given value of k, the error is a function 
of the stress state. The error is greater when σ12 is not dominant versus σ22 and starts to decrease 
rapidly when σ12 starts to become dominant.  
 
 

7.8.2 Generation of failure envelopes and calculation of margin of safety 
 

Generating failure envelopes for Hashin failure criteria in a given plane is not difficult since all 
the variables (stress components) in the equations are explicit. In the following, we will describe 
the procedure of failure envelope generation by taking an example of Hashin 2D failure criterion 
for the tensile fiber failure mode (σ11 > 0). Let’s look at the equation, 
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In the σ11-σ12 plane, the points (σ11, σ12) can be also expressed in polar coordinate system, as 

 
tr sin12 =σ    and   tr cos11 =σ                                                 (7.8.2.2) 

 
where r is the module of projection from the origin to the point on the failure envelope; t is  the 
angle of the projection. Thus, if the angle is given, the point on the envelope can be determined 
when the r is known. Substituting Eqn. (7.8.2.2) into (7.8.2.1) yields 
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thus, r can be easily solved for a given angle t, that is 
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Then, substitution of the solved variable r and given angle t into Eqn. (7.8.2.2) would give the 
values of σ11 and σ12.  This procedure can be applied to generate the failure envelopes of any 
Hashin failure criterion at any given plane. 
 
Another method commonly used for generating failure envelopes is a purely numerical approach 
based on the same principle described above. Instead of a solving the variable explicitly from the 
equations, the numerical method takes “trial-and-correct” procedure to approach the solution 
iteratively. For example, when solving Eqn. (7.8.2.3), one could give an initial value for r 
arbitrarily, and then calculate the difference between the result of the left hand-side of equation 
and the value of 1 at the right-hand side. Then use the difference to adjust the initial value for r 
and repeat the procedure till the difference falls into tolerable range. The advantage of this 
method is that it can be applied to almost any form of failure criteria regardless of the 
expressions of the equations. However, this method proves to be inefficient when many points 
need to be calculated. 
 
The margin of safety of Hashin failure criteria can be calculated using the procedure described in 
Vol.3, Chapter 15.  
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The SIFT method as described in [7.2] 
and [7.3] was implemented using 
HyperSizer Micromechanics. The 
initial attempts to verify against 
Gosse’s results have been 
unsuccessful. From our observations 
and communications with other 
industry method developers, the 
consensus is there are missing key 
pieces of information that have not 
been released in the publicly available 
documentation.  We believe this is the 
reason we are not yet successfully 
implementing the full SIFT method. 

 

7.9 Implementation of Strain Invariant Failure Theory (SIFT) 

7.9.1 Conditions of using SIFT for matrix failure 
SIFT provides two failure criteria for matrix failure, the 
dilatational strain invariant, J1 and the equivalent strain 
invariant, εequivalent. From tests of off-axis unidirectional 
IM7/epoxy composite lamina, Gosse [7.2] observed that 
when the ply angle is less than 30 degrees, εequivalent 
controls; while between 30 and 90 degrees, J1 controls, as 
shown in Fig. 7.9.1.  However, this treatment does not 
account for matrix failure under compression. The 
dilational strain, J1, basically accounts for void growth 
and it is reasonable to be used as the criterion for matrix 
cracking under tension. It seems unsound to apply J1 to 
address the matrix failure under compression. Gosse has 
not addressed this issue in his recent publication [7.1]. 
Instead, Kelly [7.40] believes that the J1 criterion is 
suited only to interlaminar failure of composite structures 
subjected to tension–tension load cases where failure is dominated by volume increase of the 
matrix. In all other load cases, it is more appropriate to use criteria such as von Mises strain 
criterion to predict the matrix failure dominated by distortion. As such, we used the following 
form of SIFT in our implementation.  
 
For matrix: 
 

If 01 ≥J ,    criticalJJ 11 ≥  
 

If 01 <J ,    critical
equivalentequivalent εε ≥  

For fiber 
 

critical
equivalentequivalent εε ≥  

 

 
Fig. 7.9.1, Measurement of critical strain invariants in the matrix of IM7/epoxy composites. 
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7.9.2 Critical values of the strain invariants 
Obtaining the critical values of J1 and eequivalent has two different choices. The first method was 
used by Gosse, who backed out these values from global–to-micro FE models of specimens 
under the actual failure loads. The second method uses the bulk constituent material strength data 
to calculate the J1 and εequivalent. For example, in uni-axial tension or compression tests, the yield 
strain, εyield, is available and can be used to find J1

critical.  
 

yieldyieldyield
critical vvJ εεεεεε )21()2(3211 −=−+=++=                                    (7.9.1.1) 

                      
or if we know criticalJ1 , the yield strain εyield can also be backed out from Eqn. (7.9.1.1). This 
relation is quite useful, particularly when the experimental value of criticalJ1  is not available. 
Likewise, the equivalent strain εeq

critical can be obtained from the relation, 
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For fibers, v12 = v13, so Eqn. (7.9.1.2) reduces to 
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7.9.3 Margin of Safety 
The margin of safety for SIFT can be obtained by using the procedure described in Vol.3, 
Chapter 15. The result is given as 
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7.9.4 Multi-scale analysis exploring the fields in fiber and matrix phases 
Multi-scale analysis was performed by using HyperSizer to find the fields from laminate level to 
constituent (micro) level, as shown in Fig. 7.9.2. In particular, the micro-level analysis was 
performed using HyperSizer Micromechanics, a computationally efficient, user-friendly, 
micromechanics analysis code designed for accurately predicting the elastic and inelastic 
thermomechanical response of multiphased materials including polymer-, ceramic-, and metal-
matrix composites.  The underlying analytical engine of HyperSizer Micromechanics is the 
NASA developed Micromechanics Analysis Code/Generalized Method of Cells (MAC/GMC) 
[7.42, 7.43]. 
 
MAC/GMC can predict the elastic and inelastic thermomechanical response of both continuous 
and discontinuous multiphased composite materials with an arbitrary internal microstructure and 
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reinforcement shape. It computes this response based on closed-form expressions for the 
macroscopic composite response in terms of the properties, size, shape, distribution, and 
response of the individual constituents or phases that make up the material. GMC allows the use 
of any inelastic (e.g., viscoplastic) deformation and/or life (e.g., fatigue) constitutive models to 
describe each constituent phases' (e.g., fiber, interface, matrix, etc.) behavior. Thus, HyperSizer 
Micromechanics is ideally suited for conducting sensitivity/parametric studies, enabling 
engineers and material scientists to easily and accurately design a composite material for a given 
application. 

 
The implementation of SIFT determines the maximum strain invariants for the fiber/matrix 
constituents based on Eqn. (7.9.1.5) and returns the minimum margin of safety.   
 

7.9.5 Verification 
 
The verification cases were selected from Gosses’s examples [7.2] of UD un-notched uniformly 
strained IM7/977-3 lamina (fiber orientation varied between 15o and 90o, relative to the loading 
axis).  Table 7.9.1 summarizes the failure loads from these examples 

Table 7.9.1, Failure loads for matrix dominated lamina (IM7/977-3 tape) 

case Fiber angle  
(degree) 

Fracture strain  
(in/in) 

Fracture stress  
(ksi) 

Failure load  
(lb) 

1 15 0.01203 57.67 11.534 x 103 
2 20 0.01483 41.50 8.300 x 103 
3 25 0.01412 33.35 6.670 x 103 
4 30 0.01454 27.92 5.584 x 103 
5 45 0.01263 16.74 3.348 x 103 
6 67 0.00996 12.76 2.552 x 103 
7 90 0.01013 12.38 2.476 x 103 

 
Figure 7.9.3 shows stress-strain curves for the tested lamina of 15 20 25 30, 45, 67 and 90 -
degrees. It can be seen that 15, 20 25 and 30 –degree lamina show very strong nonlinearity. 
 

Fig. 7.9.2, Multi-scale analysis from laminates to constituents. 
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The material properties of constituents are given below by Gosse. 

Table 7.9.2, material properties of IM7 fiber and 977-3 resin 

 E11 
(msi) 

E22 
(msi) 

G12 
(msi) 

G23 
(msi) 

v12 v23 a1 a2 

IM7 fiber 39.30 2.50 4.00 1.20 0.32 0.20 -0.60 4.60 
977-3 Resin 0.55 0.55 0.202 0.202 0.36 0.36 32.00 32.00 

 
The effective critical matrix strain invariants were derived for IM7/977-3 using Gosses’s FE 
micromechanics model.  The results are copied below for reference. 

Table 7.9.3, Maximum point, phase average, and homogenized lamina effective strain 
invariants within the matrix phase of the matrix dominated UNT data 

 
The strain invariant failure theory states that composite materials exhibit the onset of irreversible 
events for one of two deformation modes, dilatation as measured by J1, and distortion as 
measured by evm. As shown in Table 7.9.3, the homogenous, phase -averaged and maximum 
point enhanced representations of the lamina critical strain invariants all demonstrate the same 
trends.  That is, as the fiber orientation of the lamina decreases the failure mechanism shifts from 
dilatational -dominant to distortional dominant.  The trends are gradual where the deformation 
mode describing failure is dominant.  The data in Table 7.9.3 shows that there are two failure 

 

 20o

 25o

 30o

 45o 

90o

15o 

67o

Fig. 7.9.3, Experimental stress-strain curves for IM7/977-3 lamina under tension. 
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modes that compete and that these two failure modes mirror the two deformation modes.  
Therefore, if there are two deformation modes, then there should be two critical deformation 
modes describing failure.  One will always dominate except where both are coincident (from Fig. 
7.9.3 this would be somewhere around 25o for the material system IM7/977-3).  Table 7.9.3 
gives experimental verification of the existence of two effective critical deformation mechanisms 
(dilatation (J1) and distortion (evm) with respect to the matrix constituent within the composite 
material IM7/977-3. 
 
Efforts of verification  
HyperSizer Micromechanics uses rectangular subcells to represent the matrix and fiber phases, 
as shown in Fig. 7.9.4.  The region in blue color represents fiber and the grey region represents 
matrix. The initial effort was made to compare the effective properties of composites using 
different unit cell configurations with those predicted by Gosse using FEA. The results are listed 
in Table 7.9.4.  It can be seen that the values of v23 and G23 predicted by HS micromechanics are 
substantially different (>30) from the FEA results.  
 
 

 
Table 7.9.4, Comparison of predicted effective properties of IM7/977-3 (Vf = 0.60) 

 E1 (Msi) E2 (Msi) E3 (Msi) v12 v23 G12 (Msi) G13 (Msi) G23 (Msi) 
MAC 2x2 23.8 1.446 1.446 0.34 0.27 0.64 0.64 0.40 
MAC 7x7 23.8 1.418 1.418 0.34 0.28 0.69 0.69 0.40 
MAC 
26x26 

23.8 1.409 1.409 0.34 0.29 0.66 0.66 0.40 

FEA 23.8 1.31 1.31 0.36 0.394 0.707 0.707 0.498 
 
Next, the margin of safety was calculated using SIFT with MAC/GMC for the different angled 
laminae using the three different subcell configurations. It should be mentioned that in this effort, 
the critical value of J1 for the matrix is derived from Gosse’s calculation for 90-degree lamina, 
i.e., J1 = 2.34e-2. The yield strain is then backed out from Eq. (7.9.2.1), εyield = 8.36e-2 in/in for 
matrix and εyield = 3.38e-2 in/in for fiber.  Table 7.9.5 summarizes the predicted values of J1 and 
margins of safety at the reported failure loads.  If the method is obtaining accurate results, the 
margins of safety should be zero for each case. 

Fig. 7.9.4, configurations of unit cells a) 2 by 2 subcells b) 7 by 7 subcells c) 26 by 26 

(a) (b) (c) 
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Table 7.9.5, MOS (J1
critical = 2.34e-2) and predicted J1 in the matrix phase under failure 

loads 

 Nx = 2476 
(N/mm) for [90°] 

Nx = 2552 
(N/mm) for [67°] 

Nx = 3348 
(N/mm) for [45°]

Nx = 5584 
(N/mm) for [30°] 

Nx = 6670 
(N/mm) for [25°] 

 MOS J1 x10-2 MOS J1 x10-2 MOS J1 x10-2 MOS J1 x10-2 MOS J1 x10-2 
MAC 2x2 1.904 0.8058 2.315 0.7059 3.217 0.2371 3.878 0.4797 4.304 0.5437 
MAC 7x7 1.932 0.7981 2.346 0.6993 3.257 0.7184 3.921 0.4755 4.240 0.4466 
MAC 26x26 1.530 0.9249 -1 inf -1 inf -1 inf -1 inf 

 
It can be seen that large errors occur in all of the situations listed in Table 7.9.5. This may result 
from the difference between FEA and MAC/GMC. Fig. 7.9.5 shows those errors more clearly. 
Table 7.9.6 shows the local strain fields calculated by HyperSizer micromechanics.  
 

 

2x2 subcell 
 

7x7 subcell 
 

26x26 subcell

Fig. 7.9.5, Comparison of matrix phase J1 predicted by Gosse and HyperSizer under failure loads 

FEA 
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Table 7.9.6, local strain fields (26 by 26 subcells) in the angle-ply lamina 
using J1

critical = 2.34e-2 

 ε11 ε22 ε33 
90o 

   
67o 

   
45o 

   
30o 
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25o 

 
 
The large differences shown above may result from the discrepancy of accuracy of HyperSizer 
micromechanics and FEA. We could get the clue from the results of effective properties 
predicted by FEA and HyperSizer, as shown in Table 7.9.7. Note that comparing HyperSizer 
with FEA is not the purpose of this study, but rather verifying HyperSizer’s implementation of 
SIFT. Thus, the critical values of strain invariants should be from HyperSizer, not from FEA if 
we try to verify SIFT using HyperSizer in all the cases. 
 
The following effort was made to verify SIFT using J1

critical derived from HyperSizer. First, we 
selected 90-degree lamina and make a parametric study of εyield to find the critical value of J1. 
The J1

critical in the matrix found by HyperSizer is 0.798e-2 (εyield = 2.85e-2). Table 7.9.7 
summarizes the predicted values of J1 in the matrix phase and MOS. It can be seen that the J1 
values predicted are not constants at the failure loads. The variation of J1 is still large, as shown 
clearly in Fig. 7.9.6. 

 

Table 7.9.7,  MOS (J1
critical = 0.798 e-2) and predicted J1 in the matrix phase under failure 

loads 

 Nx = 2476 
(N/mm) for [90] 

Nx = 2552 
(N/mm) for [67] 

Nx = 3348 
(N/mm) for [45] 

Nx = 5584 
(N/mm) for [30] 

Nx = 6670 
(N/mm) for [25] 

 MOS J1 x10-2 MOS J1 x10-2 MOS J1 x10-2 MOS J1 x10-2 MOS J1 x10-2 
MAC 2x2 0 0.798 0.1300 0.7062 0.4377 0.5550 0.6630 0.4798 0.8915 0.4210 
MAC 7x7 0 0.798 0.1408 0.6995 0.4511 0.5499 0.6776 0.4757 0.9110 0.4176 
MAC 26x26 0 0.798 0.1344 0.7034 0.4432 0.5529 0.6690 0.4798 0.9017 0.4196 
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Another possible factor which may contribute to the large variation of J1 is material nonlinearity. 
In Fig.7.9.3, it clearly shows that the laminae exhibit nonlinearity under uniaxial tension, 
particularly the 15, 20, 25, 35 –degree laminates. Thus, using linear elastic analysis is 
inappropriate, particularly using the failure stress as the input failure load for HyperSizer 
micromechanics. Instead, we tried to use failure strain as the failure load input. Again, we need 
to find out the critical value of J1 with HyperSizer. The critical J1 was found as 0.9548e-2 (εyield = 
3.41e-2) through parametrical study. Table 7.9.8 summarizes the results of MOS and J1 in the 
matrix predicted using J1

critical = 0.9548e-2 and under failure strain instead of failure stresses. Fig. 
7.9.7 shows the variation of J1 predicted. It can be seen that in this effort the variation of J1 
decreases compared to previous two efforts. 
 

Table 7.9.8,  MOS (J1
critical = 0.9548e-2) and predicted J1 in the matrix phase under failure 

loads 

 εxx = 0.01013 
for [90] 

εxx = 0.00996 
for [67] 

εxx = 0.01263 
for [45] 

εxx = 0.01454 
for [30] 

εxx = 0.01412 
for [25] 

 MOS J1 x10-2 MOS J1 x10-2 MOS J1 x10-2 MOS J1 x10-2 MOS J1 x10-2 
MAC 2x2 0 0.9548 0.2071 0.7910 0.2962 0.7366 0.3589 0.7026 0.4802 0.6450 
MAC 7x7 0 0.9548 0.2105 0.7888 0.2527 0.7622 0.2946 0.7375 0.4078 0.6782 
MAC 26x26 0 0.9548 0.2213 0.7818 0.2780 0.7471 0.3260 0.7200 0.4422 0.6620 

 

 

Fig. 7.9.6, J1 in the matrix phase predicted by HyperSizer under failure loads 

2x2 subcell 
7x7 subcell 
26x26 subcell 
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7.9.6 Discussion 
 

SIFT has been implemented into HyperSizer through the MAC/GMC load margin capability, 
but the verification has been challenging and obviously more work needs to be done.   
 
1. The verification cases were selected from the tension tests by Gosse of 25, 30, 45, 67 and 

90 –degree UD lamina. Fig. 7.9.3 clearly shows the non-linear behavior of the material as 
the ply angle decreases. Gosse’s finite element based micromechanics model did not take 
into account nonlinearity, so it is unclear to us how it was able to overcome this 
limitation and match the test data. 

 
a. Gosse explains that “The nonlinear behavior is mainly precipitated by the 

changing Poisson’s ratio with increasing strain up to the yield point.  At the yield 
point the Poisson’s ratio of the neat polymer in tension is approximately 1/2 and 
consequently behaves as an incompressible material from the yield point to 
ultimate failure.  Incompressible behavior equates to a stable J1 strain with an 
increasing equivalent strain from the yield point to ultimate failure and 
consequently the equivalent distortional mechanism dominates.  It is for the same 
reasons that nonlinear behavior is exclusively exhibited by the distortional 
dominated lamina. The effect of increasing Poisson’s ratio causes an increase in 
the equivalent strains and a decrease in the J1 strains from the linear elastic strain.  
The present analysis is not currently accounting for the increase in equivalent or 
the decrease in J1 due to a lack of definition of the change in Poisson’s ratio with 
increasing strain.”  So it seems that, despite not taking the nonlinearity into 
account, even through an alteration of the Poisson ratio as he suggests, Gosse 
somehow manages to achieve reasonable results. 

 

 2x2 subcell 
7x7 subcell 
26x26 subcell 

Fig. 7.9.7, J1 in the matrix phase predicted by HyperSizer under failure loads 
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2. The local strain fields predicted by MAC/GMC and those predicted by FEA are expected 
to be different. We should not attempt to compare MAC/GMC results to FEA because 
first, it is not our purpose (our purpose is to verify our SIFT implementation).  Secondly, 
MAC/GMC and FEA both are approximate methods, which are hardly verified by each 
other. For the current problem, many details of the FEA models used by Gosses are not 
clear, such as boundary conditions on the laminate level to match up with the test 
conditions, and convergence test of the meshes used for the micromechanics model.  We 
suspect that Gosse’s results are dependent on the level of FE mesh refinement, as this 
would effect the J1 concentration in the FE results. 

 
3. A better evaluation of the effectiveness of SIFT would be to enter “good” fiber-matrix 

constitutive properties for laminae from the WFE and then use SIFT to try to predict 
initial failure (which is all SIFT can do for cases where the laminate exhibits progressive 
failure) and final failure in the cases where there is no progressive damage. 

 
4. We also question whether SIFT can significantly improve the accuracy of 

micromechanics-based failure prediction compared to some simple criteria, such as max 
strain/stress, etc. Although SIFT is physically based, it cannot fully explain the matrix 
compression failure mechanism. 

 
5. It may be that SIFT tends to work well in the context of FEA micromechanics.  Has it 

been shown that SIFT is better than max stress, for instance, employed on the micro-level 
in FEA?  If so, this could be related to the mesh-dependent concentrations that arise in 
FEA micromechanics. (In the context of trying to compare to Gosse’s problem, this 
might be difficult to determine.  This is because of the problem becomes non-linear, we 
can compare either to a strain based criteria, or a stress based criteria, but not both 
simultaneously, see 11 below) Perhaps SIFT overcomes some of the difficulties 
associated with comparing a maximum value from a concentration with an allowable (we 
have seen this problem with Bondjo and BJSFM, where it seems that a characteristic 
distance must be used rather than the absolute peak value).  In MAC/GMC, on the other 
hand, the concentrations are muted (i.e., averaged out) by the GMC formulation.  As 
such, this problem related to the high concentration are less of an issue. 

 
6. A relatively new addition to MAC/GMC called the High Fidelity Generalized Method of 

Cells (HFGMC) is more like FEA and would be expected to behave somewhere between 
FEA and GMC with respect to SIFT and other micro-scale failure criteria.  This method 
will be implemented in a future release of HyperSizer Micromechanics. 

 
 
7. As shown in Figure 7.9.8, we are attempting to correctly capture the local strains 

(actually local J1) in the composite by applying the global stress or strain based on elastic 
analysis.  Thus, while we are applying the correct global failure stress in case 1, the strain 
is completely wrong.  Conversely, in case 2, we are applying the correct global failure 
strain, but the wrong stress.  Without getting both of these correct, it is difficult to see 
how we will be able to extract a reasonable local J1 to compare to the allowable J1.  It is 
also difficult to see how the Gosse FEA micromechanics analysis was able to accomplish 
this. 
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